【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識(shí)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
(Ⅰ)分別估計(jì)甲、乙兩名同學(xué)在培訓(xùn)期間所有測(cè)試成績(jī)的平均分;
(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績(jī)中各選一個(gè)成績(jī)作為參考,求甲、乙兩人成績(jī)都在90分以上的概率;
(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位同學(xué)參加較為合適?說(shuō)明理由.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)見(jiàn)解析
【解析】
(Ⅰ)由莖葉圖中的數(shù)據(jù)計(jì)算、,進(jìn)而可得平均分的估計(jì)值;
(Ⅱ)求出基本事件數(shù),計(jì)算所求的概率值;
(Ⅲ)答案不唯一.從平均數(shù)與方差考慮,派甲參賽比較合適;從成績(jī)優(yōu)秀情況分析,派乙參賽比較合適.
(Ⅰ)由莖葉圖中的數(shù)據(jù),計(jì)算,
,
由樣本估計(jì)總體得,甲、乙兩名同學(xué)在培訓(xùn)期間所有測(cè)試成績(jī)的平均分分別均約為分.
(Ⅱ)從甲、乙兩名同學(xué)高于分的成績(jī)中各選一個(gè)成績(jī),基本事件是,
甲、乙兩名同學(xué)成績(jī)都在分以上的基本事件為,
故所求的概率為.
(Ⅲ)答案不唯一.
派甲參賽比較合適,理由如下:
由(Ⅰ)知,,
,
,
因?yàn)?/span>,,
所有甲的成績(jī)較穩(wěn)定,派甲參賽比較合適;
派乙參賽比較合適,理由如下:
從統(tǒng)計(jì)的角度看,甲獲得分以上(含分)的頻率為,
乙獲得分以上(含分)的頻率為,
因?yàn)?/span>,所有派乙參賽比較合適.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日是“世界讀書(shū)日”,某中學(xué)開(kāi)展了一系列的讀書(shū)教育活動(dòng).學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)讀書(shū)小組(每名學(xué)生只能參加一個(gè)讀書(shū)小組)學(xué)生抽取12名學(xué)生參加問(wèn)卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:
小組 | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 12 | 9 | 6 | 9 |
(1)從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來(lái)自同一個(gè)小組的概率;
(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、是異面直線,給出下列結(jié)論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無(wú)數(shù)個(gè)平面,使直線與平面交于一個(gè)定點(diǎn),且直線平面.
則所有正確結(jié)論的序號(hào)為( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),函數(shù)(x∈R).
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有極大值32,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)單調(diào)性并證明;
(3)對(duì)任意不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 分別為橢圓: 的左、右焦點(diǎn),點(diǎn)在橢圓上.
(Ⅰ)求的最小值;
(Ⅱ)設(shè)直線的斜率為,直線與橢圓交于, 兩點(diǎn),若點(diǎn)在第一象限,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動(dòng)。在1859年的時(shí)候,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計(jì)1000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為_(kāi)________(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn+對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒(méi)有提成,從第45單開(kāi)始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,,七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com