【題目】某房地產(chǎn)商建有三棟樓宇,三樓宇間的距離都為2千米,擬準(zhǔn)備在此三樓宇圍成的區(qū)域外建第四棟樓宇,規(guī)劃要求樓宇對(duì)樓宇,的視角為,如圖所示,假設(shè)樓宇大小高度忽略不計(jì).

(1)求四棟樓宇圍成的四邊形區(qū)域面積的最大值;

(2)當(dāng)樓宇與樓宇,間距離相等時(shí),擬在樓宇,間建休息亭,在休息亭和樓宇,間分別鋪設(shè)鵝卵石路和防腐木路,如圖,已知鋪設(shè)鵝卵石路、防腐木路的單價(jià)分別為,(單位:元千米,為常數(shù)).記,求鋪設(shè)此鵝卵石路和防腐木路的總費(fèi)用的最小值.

【答案】(1)圍成的四邊形區(qū)域 的面積的最大值 平方千米;(2)總費(fèi)用的最小值元.

【解析】

(1)由樓宇對(duì)樓宇,的視角為得樓宇D在一段圓弧上,則相等時(shí),可得最大,固定,計(jì)算此時(shí)四邊形的面積即可.

(2)用表示出,,從而表示出鋪設(shè)此鵝卵石路和防腐木路的總費(fèi):,再利用導(dǎo)數(shù)判斷的單調(diào)性,從而求得它的最小值,問(wèn)題得解.

(1)當(dāng)且僅當(dāng):時(shí),取得等號(hào),所以的最大值為

又因?yàn)樗倪呅?/span>的面積

所以四邊形的面積的最大值為.

答:四棟樓宇圍成的四邊形區(qū)域的面積的最大值平方千米.

(2)當(dāng)樓宇與樓宇間距離相等時(shí)

由(1)得:

,又因?yàn)?/span>,所以,因?yàn)榈冗吶切?/span>

所以,所以

中,,所以

,則

所以鋪設(shè)鵝卵石路和防腐木路的總費(fèi)用

因?yàn)?/span>,所以

-

0

+

極小值

所以當(dāng)時(shí),

即:的最小值為

答:鋪設(shè)此鵝卵石路和防腐木路的總費(fèi)用的最小值元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、成等比數(shù)列.

1)求橢圓的方程;

2)斜率不為的動(dòng)直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn),記,線段上的點(diǎn)滿足,試求為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在新型冠狀病毒疫情期間,商業(yè)活動(dòng)受到很大影響某小型零售連鎖店總部統(tǒng)計(jì)了本地區(qū)50家加盟店2月份的零售情況,統(tǒng)計(jì)數(shù)據(jù)如圖所示.據(jù)估計(jì),平均銷(xiāo)售收入比去年同期下降40%,則去年2月份這50家加盟店的平均銷(xiāo)售收入約為(

A.6.6萬(wàn)元B.3.96萬(wàn)元C.9.9萬(wàn)元D.7.92萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從一批蘋(píng)果中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計(jì)算蘋(píng)果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋(píng)果中共抽取4個(gè),其中重量在的有幾個(gè)?

3)在(2)中抽出的4個(gè)蘋(píng)果中,任取2個(gè),寫(xiě)出所有可能的結(jié)果,并求重量在中各有1個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)你有一筆資金,現(xiàn)有三種投資方案,這三種方案的回報(bào)如下:

方案一:每天回報(bào)40元;

方案二:第一天回報(bào)10元,以后每天比前一天多回報(bào)10元;

方案三:第一天回報(bào)0.4元,以后每天的回報(bào)比前一天翻一番.

現(xiàn)打算投資10天,三種投資方案的總收益分別為,,,則( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求證:當(dāng)時(shí),;

(Ⅱ)若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓,拋物線,點(diǎn)A是橢圓與拋物線的交點(diǎn),過(guò)點(diǎn)A的直線l交橢圓于點(diǎn)B,交拋物線MB,M不同于A).

(Ⅰ)若,求拋物線的焦點(diǎn)坐標(biāo);

(Ⅱ)若存在不過(guò)原點(diǎn)的直線l使M為線段AB的中點(diǎn),求p的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案