【題目】在平面直角坐標(biāo)系中,曲線(xiàn)過(guò)點(diǎn),其參數(shù)方程為為參數(shù),.為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

2)已知曲線(xiàn)與曲線(xiàn)交于兩點(diǎn),且,求實(shí)數(shù)的值.

【答案】(1)曲線(xiàn)普通方程,曲線(xiàn)的直角坐標(biāo)方程;(2).

【解析】

1)將代入 的普通方程;

左右同時(shí)乘以,再化簡(jiǎn)得到曲線(xiàn)的直角坐標(biāo)方程。

2)將代入,得,利用韋達(dá)定理與參數(shù)的幾何意義可求出實(shí)數(shù)的值。

(1)曲線(xiàn)參數(shù)方程為,

則其普通方程,

因?yàn)?/span>曲線(xiàn)的極坐標(biāo)方程為,

所以

,即曲線(xiàn)的直角坐標(biāo)方程.

(2)設(shè)兩點(diǎn)所對(duì)應(yīng)參數(shù)分別為,

代入,得,

要使有兩個(gè)不同的交點(diǎn),

,即,

由韋達(dá)定理有,根據(jù)參數(shù)的幾何意義可知,

又由可得,即,

當(dāng)時(shí),有,符合題意.

當(dāng)時(shí),有,符合題意.

綜上所述,實(shí)數(shù)的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,AB=1,AD,且∠BAD=45°,以BD為折線(xiàn),把△ABD折起,使ABDC,連接AC,得到三棱錐ABCD.

(1)求證:平面ABD⊥平面BCD;

(2)求二面角BACD的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正實(shí)數(shù)列a1,a2滿(mǎn)足對(duì)于每個(gè)正整數(shù)k,均有,證明:

(Ⅰ)a1+a2≥2

(Ⅱ)對(duì)于每個(gè)正整數(shù)n≥2,均有a1+a2+…+ann

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)過(guò)點(diǎn),其參數(shù)方程為為參數(shù),.為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)已知曲線(xiàn)與曲線(xiàn)交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)y=x+m和圓x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,則實(shí)數(shù)m=( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為3的菱形,∠ABC=60°PA⊥面ABCD,且PA=3F在棱PA上,且AF=1,E在棱PD上.

(Ⅰ)若CE∥面BDF,求PEED的值;

(Ⅱ)求二面角B-DF-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱(chēng)個(gè)稅)改革迎來(lái)了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)

(1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;

(2)如果該從業(yè)者在個(gè)稅新政下的專(zhuān)項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.

附注:參考數(shù)據(jù):,,,

,,其中:取,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為.

新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元)

繳稅

級(jí)數(shù)

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)

稅率

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專(zhuān)項(xiàng)附加扣除

稅率

1

不超過(guò)1500元的都分

3

不超過(guò)3000元的都分

3

2

超過(guò)1500元至4500元的部分

10

超過(guò)3000元至12000元的部分

10

3

超過(guò)4500元至9000元的部分

20

超過(guò)12000元至25000元的部分

20

4

超過(guò)9000元至35000元的部分

25

超過(guò)25000元至35000元的部分

25

5

超過(guò)35000元至55000元的部分

30

超過(guò)35000元至55000元的部分

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案