【題目】現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學期望Eξ.
【答案】解:(Ⅰ)依題意,這4個人中,每個人去參加甲游戲的概率為 ,
去參加乙游戲的人數(shù)的概率為 .
設“這4個人中恰有2人去參加甲游戲”為事件Ai(i=0,1,2,3,4),
P(Ai)= ( )i( )4﹣i .
這4個人中恰有2人去參加甲游戲的概率為P(A2)= ( )2( )2= .
(Ⅱ)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,
故P(ξ=0)=P(A2)= ,
P(ξ=2)=P(A1)+P(A3)= ,
P(ξ=4)=P(A0)+P(A4)= ,
∴ξ的分布列是
ξ | 0 | 2 | 4 |
P |
數(shù)學期望Eξ=0× +2× +4× =
【解析】(Ⅰ)依題意,這4個人中,每個人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為 .設“這4個人中恰i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)= ( )i( )4﹣i . 由此能求出這4個人中恰有2人去參加甲游戲的概率.(Ⅱ)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,求出相應的概率,可得ξ的分布列與數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】(1)解不等式:
(2)有4名男生和3名女生
i)選出4人去參加座談會,如果3人中必須既有男生又有女生,有多少種選法?
ii)7人排成一排,甲乙二人之間恰好有2個人,有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列兩個命題: 函數(shù)在[2,+∞)單調(diào)遞增; 關(guān)于的不等式的解集為.若為真命題, 為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫(yī)學院、經(jīng)濟學院的學生參加,各學院邀請的學生數(shù)如下表所示:
學院 | 機械工程學院 | 海洋學院 | 醫(yī)學院 | 經(jīng)濟學院 |
人數(shù) | 4 | 6 | 4 | 6 |
(Ⅰ)從這20名學生中隨機選出3名學生發(fā)言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發(fā)言,設來自醫(yī)學院的學生數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a1 , a3 , a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項的和,則 (n∈N+)的最小值為( )
A.4
B.3
C.2 ﹣2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(Ⅰ)若a=﹣1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣y=0平行,求a的值;
(Ⅲ)若x>0,證明: (其中e=2.71828…是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的準線與軸交于,拋物線的焦點,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設.
(1)求拋物線的方程及橢圓的方程;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】著名英國數(shù)字家和物理字家lssacNewton曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型:把物體放在冷空氣中冷卻,如果物體的初始溫度為,空氣的溫度為分鐘后物體的溫度可甶公式得到,這里是自然對數(shù)的底,是一個由物體與空氣的接觸狀況而定的正的常數(shù),先將一個初始溫度為62的物體放在15的空氣中冷卻,1分鐘后物體的溫度是52.
(1)求的值(精確到0.01);
(2)該物體從最初的62冷卻多少分鐘后溫度是32(精確到0.1)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com