【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

【答案】
【解析】解:如圖所示,在圖中,設P(x,y).
B(1,0),D(0, ),C(1, ),
由AP= ,x2+y2=
則點P滿足的約束條件為 ,
,
即(x,y)=λ(1,0)+μ(0, ),
∴x=λ,y= μ,
∴λ+ =x+y,
由于x+y≤ = = 當且僅當x=y時取等號.
則λ+ =x+y的最大值為 ,
所以答案是:

【考點精析】通過靈活運用平面向量的基本定理及其意義,掌握如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當k≥2時,若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當2≤k≤n時,恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一塊地皮,其中 是直線段,曲線段是拋物線的一部分,且點是該拋物線的頂點, 所在的直線是該拋物線的對稱軸.經(jīng)測量, km, km, .現(xiàn)要從這塊地皮中劃一個矩形來建造草坪,其中點在曲線段上,點, 在直線段上,點在直線段上,設km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當為多少時,矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.

(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)試在線段AC上一點P,使得PF與CD所成的角是60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在上的函數(shù)滿足:對任意的,當時,都有,則稱是“非減函數(shù)”.

(1)若是“非減函數(shù)”,求的取值范圍;

(2)若為周期函數(shù),且為“非減函數(shù)”,證明是常值函數(shù);

(3)設恒大于零,是定義在R上、恒大于零的周期函數(shù),的最大值。函數(shù)。證明:“是周期函數(shù)”的充要條件“是常值函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1 , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x、y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為7,則 的最小值為

查看答案和解析>>

同步練習冊答案