【題目】已知函數(shù)f(x),g(x)1.
(1)若f(a)=2,求實數(shù)a的值;
(2)判斷f(x)的單調性,并證明;
(3)設函數(shù)h(x)=g(x)(x>0),若h(2t)+mh(t)+4>0對任意的正實數(shù)t恒成立,求實數(shù)m的取值范圍.
【答案】(1)a=log23;(2)函數(shù)f(x)在(﹣∞,0),(0,+∞)上單調遞減,證明見解析(3)[﹣3,+∞).
【解析】
(1)根據(jù)f(a)=2,代入解析式求解.
(2)函數(shù)f(x)在(﹣∞,0),(0,+∞)上單調遞減,用單調性的定義證明.
(3)化簡得到,將0對任意的正實數(shù)t恒成立,通過換元,μ∈(2,+∞),轉化為μ2+mμ+2>0對任意μ∈(2,+∞)恒成立,即對任意μ∈(2,+∞)恒成立,再求解最大值即可.
(1)∵,
∴2a=3,
∴a=log23;
(2)函數(shù)f(x)在(﹣∞,0),(0,+∞)上單調遞減,
證明如下:
函數(shù)的定義域為(﹣∞,0)∪(0,+∞),
因為f(-x)
所以f(x)是奇函數(shù)
任取且
,
因為
所以
因為
所以
所以
所以f(x)在(0,+∞)上單調遞減,
又因為f(x)是奇函數(shù)
故函數(shù)f(x)在(﹣∞,0),(0,+∞)上單調遞減;
(3),,
∴0對任意的正實數(shù)t恒成立,
令,則μ∈(2,+∞),
∴μ2+mμ+2>0對任意μ∈(2,+∞)恒成立,
即對任意μ∈(2,+∞)恒成立,
又在(2,+∞)上單調遞減,故,
則m≥﹣3,即實數(shù)m的取值范圍為[﹣3,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊長分別為a、b、c,且acosB+bcosA=2ccosB.
(1)若a=3,,求c的值;
(2)若,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩定點,,點是平面內的動點,且,記的軌跡是.
(1)求曲線的方程;
(2)過點引直線交曲線于兩點,點關于軸的對稱點為,證明直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了了解高一新生是否愿意參加軍訓,隨機調查了80名新生,得到如下2×2列聯(lián)表
愿意 | 不愿意 | 合計 | |
男 | x | 5 | M |
女 | y | z | 40 |
合計 | N | 25 | 80 |
(1)寫出表中x,y,z,M,N的值,并判斷是否有99.9%的把握認為愿意參加軍訓與性別有關;
(2)在被調查的不愿意參加軍訓的學生中,隨機抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.
參考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2(a∈R).
(1)若a=e,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,能對農作物造成嚴重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關,現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產(chǎn)卵數(shù)/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據(jù)散點圖判斷,與(其中自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)y關于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數(shù)據(jù),求出y關于x的回歸方程.(計算結果精確到小數(shù)點后第三位)
(2)根據(jù)以往統(tǒng)計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應的概率p.
②當取最大值時,記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學期望和方差.
附:線性回歸方程系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,直線與橢圓的兩交點間距離為.
(1)求橢圓的方程;
(2)如圖,設是橢圓上的一動點,由原點向圓引兩條切線,分別交橢圓于點,若直線的斜率均存在,并分別記為,求證:為定值.
(3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計算該數(shù)列的項時,若輸出的是2,則判斷框內的條件不可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com