【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=AD,E,F分別為PC,BD的中點.
求證:(1)EF∥平面PAD;
(2)PA⊥平面PDC.
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】曲線C1的參數(shù)方程為 (θ為參數(shù)),將曲線C1上所有點的橫坐標伸長為原來的2倍,縱坐標伸長為原來的倍,得到曲線C2.以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(cosθ-2sinθ)=6.
(1)求曲線C2和直線l的普通方程.
(2)P為曲線C2上任意一點,求點P到直線l的距離的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實數(shù)k的值;
(2)若函數(shù)g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用長為18 cm的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù),當x∈(-3,2)時,>0,當x∈(-,-3)(2,+)時,<0
(I)求a,b的值;
(II)若不等式的解集為R,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點,離心率為.
(1)求橢圓的方程;
(2), 是過點且互相垂直的兩條直線,其中交圓于, 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com