【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.

(1)寫出C的普通方程;

(2)設直線l:2x+y-2=0與C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

【答案】(1);(2)

【解析】分析:(1)利用坐標的伸縮變換公式求C的普通方程.(2)先求得P1(1,0),P2(0,2),得線段P1P2的中點坐標再求直線的斜率,寫出直線的直角坐標方程,再化為極坐標方程.

詳解:(1)設(x1,y1)為圓上的點,在已知變換下變?yōu)镃上點(x,y),

依題意,

x2C的方程為x2

(2)

妨設P1(1,0),P2(0,2),則線段P1P2的中點坐標

所求直線斜率為k

于是所求直線方程為y-1

化為極坐標方程,并整理得

2ρcos θ-4ρsin θ=-3,

即ρ

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,某單位采用新工藝,把二氧化硅轉化為一種可利用的化工產(chǎn)品.已知該單位每月都有處理量,且處理量最多不超過噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關系可近似的表示為:,且每處理一噸二氧化硅得到可利用的化工產(chǎn)品價值為.

1)設該單位每月獲利為(元),試將表示月處理(噸)的函數(shù);

2)若要保證該單位每月不虧損,則每月處理量應控制在什么范圍?

3)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

(1)證明:平面

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A、B、C的對邊分別為a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax+cosx,x∈[0,π].
(1)討論f(x)的單調性;
(2)設f(x)≤1+sinx,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x2﹣2x﹣3,定義數(shù)列{ xn}如下:x1=2,xn+1是過兩點P(4,5),Qn( xn , f(xn))的直線PQn與x軸交點的橫坐標.
(1)證明:2≤xn<xn+1<3;
(2)求數(shù)列{ xn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是半正多面體(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體的所有棱長和為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C0 ,動圓C1 .點A1 , A2分別為C0的左右頂點,C1與C0相交于A,B,C,D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設動圓C2 與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2 . 若矩形ABCD與矩形A′B′C′D′的面積相等,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足,且上為增函數(shù),,則不等式的解集為__________

查看答案和解析>>

同步練習冊答案