【題目】函數(shù)f(x)=x2﹣2x﹣3,定義數(shù)列{ xn}如下:x1=2,xn+1是過(guò)兩點(diǎn)P(4,5),Qn( xn , f(xn))的直線PQn與x軸交點(diǎn)的橫坐標(biāo).
(1)證明:2≤xn<xn+1<3;
(2)求數(shù)列{ xn}的通項(xiàng)公式.
【答案】
(1)
證明:①n=1時(shí),x1=2,直線PQ1的方程為
當(dāng)y=0時(shí),∴ ,∴2≤x1<x2<3;
②假設(shè)n=k時(shí),結(jié)論成立,即2≤xk<xk+1<3,直線PQk+1的方程為
當(dāng)y=0時(shí),∴
∵2≤xk<xk+1<3,∴
∴xk+1<xk+2∴2≤xk+1<xk+2<3
即n=k+1時(shí),結(jié)論成立
由①②可知:2≤xn<xn+1<3;
(2)
解:由(1),可得
設(shè)bn=xn﹣3,∴
∴
∴ 是以﹣ 為首項(xiàng),5為公比的等比數(shù)列
∴
∴
∴ .
【解析】(1)用數(shù)學(xué)歸納法證明:①n=1時(shí),x1=2,直線PQ1的方程為 ,當(dāng)y=0時(shí),可得 ;②假設(shè)n=k時(shí),結(jié)論成立,即2≤xk<xk+1<3,直線PQk+1的方程為 ,當(dāng)y=0時(shí),可得 ,根據(jù)歸納假設(shè)2≤xk<xk+1<3,可以證明2≤xk+1<xk+2<3,從而結(jié)論成立.(2)由(1),可得 ,構(gòu)造bn=xn﹣3,可得 是以﹣ 為首項(xiàng),5為公比的等比數(shù)列,由此可求數(shù)列{ xn}的通項(xiàng)公式.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的兩個(gè)頂點(diǎn)分別為和,兩個(gè)焦點(diǎn)分別為和(),過(guò)點(diǎn)的直線與橢圓相交于另一點(diǎn),且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線上有一點(diǎn)()在的外接圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2-5ax+4a2<0(其中a>0),q:實(shí)數(shù)x滿足2<x≤5.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若q是p的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點(diǎn),PE=2EC.
(1)證明:PC⊥平面BED;
(2)設(shè)二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫出C的普通方程;
(2)設(shè)直線l:2x+y-2=0與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個(gè)不同地區(qū)去巡回醫(yī)療,一個(gè)地區(qū)去一名教師,共有多少種分派方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)(x∈R)滿足f(﹣x)=f(x),f(x)=f(2﹣x),且當(dāng)x∈[0,1]時(shí),f(x)=x3 . 又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)﹣f(x)在 上的零點(diǎn)個(gè)數(shù)為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com