【題目】如圖,已知橢圓C0: ,動圓C1: .點A1 , A2分別為C0的左右頂點,C1與C0相交于A,B,C,D四點.
(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2: 與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2 . 若矩形ABCD與矩形A′B′C′D′的面積相等,證明: 為定值.
【答案】
(1)
解:設(shè)A(x1,y1),B(x1,﹣y1),
∵A1(﹣a,0),A2(a,0),則直線A1A的方程為 ①
直線A2B的方程為y=﹣ (x﹣a)②
由①×②可得: ③
∵A(x1,y1)在橢圓C0上,
∴
∴
代入③可得:
∴ ;
(2)
證明:設(shè)A′(x3,y3),
∵矩形ABCD與矩形A'B'C'D'的面積相等
∴4|x1||y1|=4|x3||y3|
∴ =
∵A,A′均在橢圓上,
∴ =
∴ =
∴
∵t1≠t2,∴x1≠x3.
∴
∵ ,
∴
∴ =a2+b2為定值
【解析】(1)設(shè)出線A1A的方程、直線A2B的方程,求得交點滿足的方程,利用A在橢圓C0上,化簡即可得到M軛軌跡方程;(2)根據(jù)矩形ABCD與矩形A'B'C'D'的面積相等,可得A,A′坐標之間的關(guān)系,利用A,A′均在橢圓上,即可證得 =a2+b2為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為 ( )
(參考數(shù)據(jù): )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的普通方程;
(2)設(shè)直線l:2x+y-2=0與C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)(x∈R)滿足f(﹣x)=f(x),f(x)=f(2﹣x),且當x∈[0,1]時,f(x)=x3 . 又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)﹣f(x)在 上的零點個數(shù)為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾日趨嚴重,霧霾的工作、生活受到了嚴重的影響,如何改善空氣質(zhì)量已成為當今的熱點問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時,可使利潤最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如下表
年產(chǎn)量/畝 | 年種植成本/畝 | 每噸售價 | |
黃瓜 | 4噸 | 1.2萬元 | 0.55萬元 |
韭菜 | 6噸 | 0.9萬元 | 0.3萬元 |
為使一年的種植總利潤(總利潤=總銷售收入﹣總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為( )
A.50,0
B.30,20
C.20,30
D.0,50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個仿古的首飾盒,其左視圖是由一個半徑為分米的半圓和矩形組成,其中長為分米,如圖(2).為了美觀,要求.已知該首飾盒的長為分米,容積為4立方分米(不計厚度),假設(shè)該首飾盒的制作費用只與其表面積有關(guān),下半部分的制作費用為每平方分米2百元,上半部制作費用為每平方分米4百元,設(shè)該首飾盒的制作費用為百元.
(1)寫出關(guān)于的函數(shù)解析式;
(2)當為何值時,該首飾盒的制作費用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)為何值時,.①有且僅有一個零點;②有兩個零點且均比-1大;
(2)若函數(shù)有4個零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com