【題目】已知函數(shù).

(1)判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論;

(2)當(dāng)時(shí),若不等式對(duì)于恒成立,求的最大值.

【答案】(1)當(dāng)時(shí),上是減函數(shù),當(dāng)時(shí),上是增函數(shù),證明見(jiàn)解析;(2).

【解析】

1)對(duì)函數(shù)進(jìn)行變形,分類(lèi)討論即可得到單調(diào)性;

2)結(jié)合(1)的結(jié)論,根據(jù)單調(diào)性轉(zhuǎn)化為對(duì)于恒成立,即可求解.

(1)

當(dāng)時(shí),上是減函數(shù),

當(dāng)時(shí),上是增函數(shù).

證明如下:

任取,

因?yàn)?/span>,所以,,

所以,

所以當(dāng)時(shí),

,

所以,故函數(shù)上是減函數(shù).

所以當(dāng)時(shí),,

所以,所以,

故函數(shù)上是增函數(shù).

(2)易知是奇函數(shù),,

.

當(dāng)時(shí),由(1)知,上是減函數(shù),

從而在上是減函數(shù),故對(duì)恒成立,

對(duì)恒成立.

因?yàn)?/span>上是減函數(shù),

所以的值域?yàn)?/span>.

所以,故的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”是一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶只需以運(yùn)動(dòng)手環(huán)或手機(jī)協(xié)處理器的運(yùn)動(dòng)數(shù)據(jù)為介,然后關(guān)注該公眾號(hào),就能看見(jiàn)自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn).現(xiàn)隨機(jī)選取朋友圈中的50人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)/

10000以上

男生人數(shù)/

1

2

7

15

5

女性人數(shù)/

0

3

7

9

1

規(guī)定:人一天行走的步數(shù)超過(guò)8000步時(shí)被系統(tǒng)評(píng)定為“積極性”,否則為“懈怠性”.

(1)填寫(xiě)下面列聯(lián)表(單位:人),并根據(jù)列表判斷是否有90%的把握認(rèn)為“評(píng)定類(lèi)型與性別有關(guān)”;

積極性

懈怠性

總計(jì)

總計(jì)

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(2)為了進(jìn)一步了解“懈怠性”人群中每個(gè)人的生活習(xí)慣,從步行數(shù)在的人群中再隨機(jī)抽取3人,求選中的人中男性人數(shù)超過(guò)女性人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若整數(shù)、既不互素,又不存在整除關(guān)系,則稱(chēng)、為一個(gè)聯(lián)盟數(shù)對(duì).設(shè)為集元子集,且中任兩數(shù)均為聯(lián)盟數(shù)對(duì).的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上的最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,已知,,且,成等差數(shù)列,,也成等差數(shù)列.

求證:是等比數(shù)列;

設(shè)m是不超過(guò)100的正整數(shù),求使成立的所有數(shù)對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將某校高二年級(jí)某班的學(xué)業(yè)水平測(cè)試數(shù)學(xué)成績(jī)分為、、五組,繪制而成的莖葉圖、頻率分布直方圖如下,由于工作疏忽,莖葉圖有部分被損壞,頻率分布直方圖也不完整,請(qǐng)據(jù)此解答如下問(wèn)題:(注:該班同學(xué)數(shù)學(xué)成績(jī)均在區(qū)間內(nèi))

1)將頻率分布直方圖補(bǔ)充完整.

2)該班希望組建兩個(gè)數(shù)學(xué)學(xué)習(xí)互助小組,班上數(shù)學(xué)成績(jī)最好的兩位同學(xué)分別擔(dān)任兩組組長(zhǎng),將此次成績(jī)低于60分的同學(xué)作為組員平均分到兩組,即每組有一名組長(zhǎng)和兩名成績(jī)低60分的組員,求此次考試成績(jī)?yōu)?/span>52分、54分和98分的三名同學(xué)分到同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)A5,3),B4,4)兩點(diǎn),且圓心在x軸上.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線l過(guò)點(diǎn)(5,2),且被圓C所截得的弦長(zhǎng)為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公差不為零的等差數(shù)列中,,成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列的前n項(xiàng)和為,且滿足

求數(shù)列,的通項(xiàng)公式;

,數(shù)列的前n項(xiàng)和為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案