【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:當(dāng)時,.
【答案】(1)f(x)的單調(diào)增區(qū)間為(1,+∞), 單調(diào)減區(qū)間為(0,1);(2)見解析.
【解析】
(Ⅰ)明確定義域,求出導(dǎo)函數(shù),解不等式即可得到函數(shù)的單調(diào)區(qū)間;
(Ⅱ)作差構(gòu)造新函數(shù),研究函數(shù)的最值即可.
(1)依題意知函數(shù)的定義域?yàn)?/span>{x|x>0},
∵f′(x)=2x-2=,
由f′(x)>0, 得x>1; 由f′(x)<0, 得0<x<1
∴f(x)的單調(diào)增區(qū)間為(1,+∞), 單調(diào)減區(qū)間為(0,1).
(2)設(shè)g(x)=f(x)-3x+1=x2-2lnx-3x+4,
∴g′(x)=2x-2--3=,
∵當(dāng)x>2時,g′(x)>0,
∴g(x)在(2,+∞)上為增函數(shù),
∴g(x)>g(2)=4-2ln2-6+4>0,
∴當(dāng)x>2時, x2-2lnx>3x-4,
即當(dāng)x>2時..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,判斷是否為的極值點(diǎn),并說明理由;
(2)記.若函數(shù)存在極大值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)在一個選拔項(xiàng)目中,每個選手都需要進(jìn)行4輪考核,每輪設(shè)有一個問題,能正確回答者進(jìn)入下一輪考核,否則被淘汰。已知某選手能正確回答第一、二、三、四輪問題的概率分別為、、、,且各輪問題能否正確回答互不影響。
(Ⅰ)求該選手進(jìn)入第三輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率;
(Ⅲ)該選手在選拔過程中回答過的問題個數(shù)記為,求隨機(jī)變量的分布列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若函數(shù)在內(nèi)有且只有一個零點(diǎn),求此時函數(shù)的單調(diào)區(qū)間;
當(dāng)時,若函數(shù)在上的最大值和最小值的和為1,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且).
(1)判斷函數(shù)在上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)時,若不等式對于恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(14分)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時,是否同時存在實(shí)數(shù)m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,求的最大值;
(2)若在區(qū)間上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形,,,,平面平面,點(diǎn)為上一點(diǎn).
(1)若平面,求證:點(diǎn)為中點(diǎn);
(2)求證:平面平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com