【題目】已知,,,函數(shù).

1)如果實數(shù)a,b滿足,試判斷函數(shù)的奇偶性;

2)設,,判斷函數(shù)R上的單調性并加以證明.

【答案】(1)當時,是偶函數(shù);當時,是奇函數(shù);當時,既不是奇函數(shù)也不是偶函數(shù).(2)函數(shù)R上是增函數(shù),證明見解析.

【解析】

1)討論,三種情況,根據(jù)奇偶性的定義得到答案.

2)函數(shù)單調遞增,設,計算得到,得到證明.

1)由已知,得,,.

是偶函數(shù),則,即對任意實數(shù)x恒成立,;

是奇函數(shù),則,即對任意實數(shù)x恒成立,.

綜上,當時,是偶函數(shù);當時,是奇函數(shù);當時,既不是奇函數(shù)也不是偶函數(shù).

2,,∴函數(shù)是增函數(shù),是減函數(shù).

知,是增函數(shù),即函數(shù)R上是增函數(shù).

證明如下:設,,則.

,,,,,,,即,故函數(shù)R上是增函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)證明:當時,函數(shù)上是單調函數(shù);

(2)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質量,定期進行質量檢驗.某次檢驗中,從產(chǎn)品中隨機抽取100件作為樣本,測量產(chǎn)品質量體系中某項指標值,根據(jù)測量結果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術分析人員認為,本次測量的該產(chǎn)品的質量指標值X服從正態(tài)分布,若同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,計算,并計算測量數(shù)據(jù)落在(187.8,212.2)內的概率;

(3)設生產(chǎn)成本為y元,質量指標值為,生產(chǎn)成本與質量指標值之間滿足函數(shù)關系假設同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,試計算生產(chǎn)該疫苗的平均成本.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,直線l的極坐標方程為

(1)求C1的參數(shù)方程和的直角坐標方程;

(2)已知P是C2上參數(shù)對應的點,Q為C1上的點,求PQ中點M到直線的距離取得最大值時,點Q的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查某大學學生在某天上網(wǎng)的時間,隨機對100名男生和100名女生進行了不記名的問卷調查. 得到如下的統(tǒng)計結果.

1:男生上網(wǎng)時間與頻數(shù)分布表:

上網(wǎng)時間(分鐘)

人數(shù)

10

20

40

20

10

2:女生上網(wǎng)時間與頻數(shù)分布表:

上網(wǎng)時間(分鐘)

人數(shù)

5

25

30

25

15

完成下面的2×2列聯(lián)表,并回答能否有90%的把握認為“大學生上網(wǎng)時間與性別有關”?

附:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在實數(shù),使得成立,則x0稱為f(x)的“不動點”.

(1)設函數(shù),求的不動點;

(2)設函數(shù),若對于任意的實數(shù)b,函數(shù)f(x)恒有兩相異的不動點,求實數(shù)a的取值范圍;

(3)設函數(shù)定義在上,證明:若存在唯一的不動點,則也存在唯一的不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知五邊形ABECD由一個直角梯形和一個等邊三角形構成(如圖1所示),.將梯形沿著折起(如圖2所示),點的中點,平面

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:①存在實數(shù)α,使sinαcosα1 ②函數(shù)ysinx)是偶函數(shù):③直線x是函數(shù)ysin2x)的一條對稱軸:④若α、β是第一象限的角,且αβ,則sinαsinβ.其中正確的命題是(

A.①②B.②③C.①③D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求的極坐標方程;

(2)若曲線的極坐標方程為,直線在第一象限的交點為,與的交點為(異于原點),求.

查看答案和解析>>

同步練習冊答案