設(shè)函數(shù)f(x)的定義域?yàn)镽,且f(x+2)=f(x+1)-f(x),若f(4)=-2則函數(shù)g(x)=ex+
2f(2011)
ex+1
的最小值是( 。
分析:先根據(jù)條件f(x+2)=f(x+1)-f(x)可得函數(shù)的周期性,然后將f(2011)轉(zhuǎn)化成f(4),根據(jù)基本不等式求最值的方法即可得答案.
解答:解:∵f(x+2)=f(x+1)-f(x),①
∴f(x+3)=f(x+2)-f(x+1)②
將①+②得f(x+3)=-f(x)
∴f(x+6)=f[(x+3)+3]=f(x+3)=f(x)
∴f(2011)=f(7+334×6)=f(7)=f(4+3)=-f(4)=2
g(x)=ex+
2×2
ex+1
=ex+1+
4
ex+1
-1
,
由基本不等式可得,g(x)≥2
(ex+1)
4
ex+1
-1=3
,
當(dāng)且僅當(dāng)ex+1=
4
ex+1
,即x=0時(shí),上式取到等號(hào).
g(x)=ex+
2f(2011)
ex+1
的最小值為:3
故選B.
點(diǎn)評(píng):本題主要考查了抽象函數(shù)及其應(yīng)用,以及函數(shù)的周期性和基本不等式求最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案