(2012•佛山二模)集合M={a1,a2,…,am},N={b1,b2,…,bn},定義集合M⊕N={(a,b)|a=a1+a2+…+am,b=b1+b2+…+bn},已知M={1,3,5,7,9},N={2,4,6,8},則M⊕N的子集為(  )
分析:由集合M={a1,a2,…,am},N={b1,b2,…,bn},定義集合M⊕N={(a,b)|a=a1+a2+…+am,b=b1+b2+…+bn},可知集合M⊕N中只有一組數(shù)對,即集合只有一個元素,所以其子集個數(shù)為2個,即得結(jié)論.
解答:解:由于集合M={a1,a2,…,am},N={b1,b2,…,bn},
定義集合M⊕N={(a,b)|a=a1+a2+…+am,b=b1+b2+…+bn},
而M={1,3,5,7,9},N={2,4,6,8},所以M⊕N={(25,20)},
又由空集是任何集合的子集,所以M⊕N的子集為:∅,{(25,20)}.
故答案選 D.
點(diǎn)評:本題為創(chuàng)新概念題,一定要緊扣新概念,題目又考查了集合的子集這一概念,解題時要熟練掌握基本概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)已知函數(shù)fM(x)的定義域?yàn)閷?shí)數(shù)集R,滿足fM(x)=
1,x∈M
0,x∉M
(M是R的非空真子集),在R上有兩個非空真子集A,B,且A∩B=∅,則F(x)=
fA∪B(x)+1
fA(x)+fB(x)+1
的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴(yán)重:
PM2.5日均濃度 0~35 35~75 75~115 115~150 150~250 >250
空氣質(zhì)量級別 一級 二級 三級 四級 五級 六級
空氣質(zhì)量類別 優(yōu) 輕度污染 中度污染 重度污染 嚴(yán)重污染
某市2012年3月8日-4月7日(30天)對空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測,獲得數(shù)據(jù)后得到如條形圖:
(Ⅰ)估計該城市一個月內(nèi)空氣質(zhì)量類別為良的概率;
(Ⅱ)在上述30個監(jiān)測數(shù)據(jù)中任取2個,設(shè)X為空氣質(zhì)量類別為優(yōu)的天數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象,其中A,B兩點(diǎn)之間的距離為5,那么f(-1)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)若logmn=-1,則m+3n的最小值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)函數(shù)y=f(x)的圖象在點(diǎn)M(1,f(1))處的切線方程為y=ex-e,則f′(1)=
e
e

查看答案和解析>>

同步練習(xí)冊答案