【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a1=a,當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.
(1)求a的值;
(2)設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n , 且cn=3n1+a5 , 求使不等式4Tn>S10成立的最小正整數(shù)n的值.

【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d.

當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.a(chǎn)1=a,

分別令n=2,3,可得: =12a2+a2, =27a3+

∴(2a+d)2=12(a+d)+a2,2a+2a2+a3=27=5a+4d,

聯(lián)立解得a=3,d=3


(2)解:由(1)可得:an=3+3(n﹣1)=3n.

Sn= =

cn=3n1+a5=15+3n1

∴數(shù)列{cn}的前n項(xiàng)和Tn= +15n= +15n.

不等式4Tn>S10,即:4×[ +15n]>

化為:f(n)=23n+60n﹣167>0,

f(2)=﹣29<0,f(3)=67>0.

使不等式4Tn>S10成立的最小正整數(shù)n的值為3


【解析】(1)設(shè)等差數(shù)列{an}的公差為d.當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.a(chǎn)1=a,分別令n=2,3,可得: =12a2+a2, =27a3+ .化簡(jiǎn)解出即可得出.(2)由(1)可得:an=3n.Sn= .cn=3n1+a5=15+3n1.求得數(shù)列{cn}的前n項(xiàng)和Tn= +15n.代入不等式4Tn>S10,化簡(jiǎn)即可得出.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)f(x)= (其中e為自然對(duì)數(shù)的底數(shù)),h(x)=x﹣
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)g(x)= ,.已知直線y= 是曲線y=f(x)的切線,且函數(shù)g(x)在(0,+∞)上是增函數(shù).
(i)求實(shí)數(shù)a的值;
(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線l經(jīng)過(guò)拋物線的焦點(diǎn),若直線l與拋物線和圓的交點(diǎn)自上而下依次為A,B,C,D,則|AB|+|CD|=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(1﹣m)lnx+ ﹣x,m∈R且m≠0.
(Ⅰ)當(dāng)m=2時(shí),令g(x)=f(x)+log2(3k﹣1),k為常數(shù),求函數(shù)y=g(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)若不等式f(x)>1﹣ 在x∈[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義“正對(duì)數(shù)”:ln+x= ,現(xiàn)有四個(gè)命題: ①若a>0,b>0,則ln+(ab)=bln+a
②若a>0,b>0,則ln+(ab)=ln+a+ln+b
③若a>0,b>0,則 b
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln2
其中的真命題有: . (寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(
A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即S= .現(xiàn)有周長(zhǎng)為4+ 的△ABC滿足sinA:sinB:sinC=( ﹣1): : ( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究家用轎車(chē)在高速公路上的車(chē)速情況,交通部門(mén)隨機(jī)對(duì)50名家用轎車(chē)駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車(chē)速情況為:在30名男性駕駛員中,平均車(chē)速超過(guò)100km/h的有20人,不超過(guò)100km/h的有10人.在20名女性駕駛員中,平均車(chē)速超過(guò)100km/h的有5人,不超過(guò)100km/h的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車(chē)速超過(guò)100km/h的人與性別有關(guān);

平均車(chē)速超過(guò)100km/h人數(shù)

平均車(chē)速不超過(guò)100km/h人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(Ⅱ)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車(chē)中隨機(jī)抽取3輛,記這3輛車(chē)中駕駛員為女性且車(chē)速不超過(guò)100km/h的車(chē)輛數(shù)為ζ,若每次抽取的結(jié)果是相互獨(dú)立的,求ζ的分布列和數(shù)學(xué)期望.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案