【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a1=a,當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.
(1)求a的值;
(2)設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n , 且cn=3n﹣1+a5 , 求使不等式4Tn>S10成立的最小正整數(shù)n的值.
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d.
當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.a(chǎn)1=a,
分別令n=2,3,可得: =12a2+a2, =27a3+ .
∴(2a+d)2=12(a+d)+a2,2a+2a2+a3=27=5a+4d,
聯(lián)立解得a=3,d=3
(2)解:由(1)可得:an=3+3(n﹣1)=3n.
Sn= = .
cn=3n﹣1+a5=15+3n﹣1.
∴數(shù)列{cn}的前n項(xiàng)和Tn= +15n= +15n.
不等式4Tn>S10,即:4×[ +15n]> .
化為:f(n)=23n+60n﹣167>0,
f(2)=﹣29<0,f(3)=67>0.
∴ 使不等式4Tn>S10成立的最小正整數(shù)n的值為3
【解析】(1)設(shè)等差數(shù)列{an}的公差為d.當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.a(chǎn)1=a,分別令n=2,3,可得: =12a2+a2, =27a3+ .化簡(jiǎn)解出即可得出.(2)由(1)可得:an=3n.Sn= .cn=3n﹣1+a5=15+3n﹣1.求得數(shù)列{cn}的前n項(xiàng)和Tn= +15n.代入不等式4Tn>S10,化簡(jiǎn)即可得出.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:或;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓的方程;
(2)若圓與直線交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)= (其中e為自然對(duì)數(shù)的底數(shù)),h(x)=x﹣ .
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)g(x)= ,.已知直線y= 是曲線y=f(x)的切線,且函數(shù)g(x)在(0,+∞)上是增函數(shù).
(i)求實(shí)數(shù)a的值;
(ii)求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線l經(jīng)過(guò)拋物線的焦點(diǎn),若直線l與拋物線和圓的交點(diǎn)自上而下依次為A,B,C,D,則|AB|+|CD|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(1﹣m)lnx+ ﹣x,m∈R且m≠0.
(Ⅰ)當(dāng)m=2時(shí),令g(x)=f(x)+log2(3k﹣1),k為常數(shù),求函數(shù)y=g(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)若不等式f(x)>1﹣ 在x∈[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義“正對(duì)數(shù)”:ln+x= ,現(xiàn)有四個(gè)命題: ①若a>0,b>0,則ln+(ab)=bln+a
②若a>0,b>0,則ln+(ab)=ln+a+ln+b
③若a>0,b>0,則 b
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln2
其中的真命題有: . (寫(xiě)出所有真命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為( )
A.20π
B.24π
C.28π
D.32π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即S= .現(xiàn)有周長(zhǎng)為4+ 的△ABC滿足sinA:sinB:sinC=( ﹣1): : ( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究家用轎車(chē)在高速公路上的車(chē)速情況,交通部門(mén)隨機(jī)對(duì)50名家用轎車(chē)駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車(chē)速情況為:在30名男性駕駛員中,平均車(chē)速超過(guò)100km/h的有20人,不超過(guò)100km/h的有10人.在20名女性駕駛員中,平均車(chē)速超過(guò)100km/h的有5人,不超過(guò)100km/h的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車(chē)速超過(guò)100km/h的人與性別有關(guān);
平均車(chē)速超過(guò)100km/h人數(shù) | 平均車(chē)速不超過(guò)100km/h人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) | |||
(Ⅱ)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車(chē)中隨機(jī)抽取3輛,記這3輛車(chē)中駕駛員為女性且車(chē)速不超過(guò)100km/h的車(chē)輛數(shù)為ζ,若每次抽取的結(jié)果是相互獨(dú)立的,求ζ的分布列和數(shù)學(xué)期望.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com