【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個零點,則m的取值范圍為(
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)

【答案】D
【解析】解:函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個零點,即函數(shù)f(x)=x3﹣3x2﹣9x+3,與y=m兩個函數(shù)的圖象有三個交點,下研究函數(shù)f(x)=x3﹣3x2﹣9x+3的性質(zhì) 由題意f'(x)=3x2﹣6x﹣9
令f'(x)=3x2﹣6x﹣9>0解得x>3或x<﹣1
又x∈[﹣2,5]
故f(x)=x3﹣3x2﹣9x+3在(﹣2,﹣1)與(3,5)上是增函數(shù),在(﹣1,3)上是減函數(shù),
x=﹣2,﹣1,3,5時,函數(shù)值對應為1,8,﹣24,8
其圖象如圖,可得1≤m<8
故選D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的中心在坐標原點,焦點在x軸上,A1 , A2 , B1 , B2為橢圓頂點,F(xiàn)2為右焦點,延長B1F2與A2B2交于點P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是(
A.( ,1)
B.(0,
C.(0,
D.( ,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是定義域為R的奇函數(shù),當x∈[0,+∞)時,f(x)=x2﹣2x.
(Ⅰ)寫出函數(shù)y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3個不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若x≥0,y≥0,且x+2y=1,則2x+3y2的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù)), .

(1)若的極值點,且直線分別與函數(shù)的圖象交于,求兩點間的最短距離;

(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當x∈[a+1,1]時,f(x)的最大值與最小值之差為g(a),則g(a)的最小值為(
A.
B.1
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實數(shù)a取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,則下列關(guān)于函數(shù)f(x)的說法正確的是(
A.為奇函數(shù)且在R上為增函數(shù)
B.為偶函數(shù)且在R上為增函數(shù)
C.為奇函數(shù)且在R上為減函數(shù)
D.為偶函數(shù)且在R上為減函數(shù)

查看答案和解析>>

同步練習冊答案