【題目】已知橢圓:的兩個(gè)焦點(diǎn)分別為,且橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.
【答案】(1) (2) 或
【解析】
試題分析:(Ⅰ)利用橢圓定義求出長(zhǎng)軸長(zhǎng),則離心率可求;(Ⅱ)分類設(shè)出直線l的方程,斜率不存在時(shí)極易驗(yàn)證不合題意,斜率存在時(shí),聯(lián)立直線方程和橢圓方程,利用根與系數(shù)關(guān)系得到兩交點(diǎn)P,Q的橫坐標(biāo)的和與積,由得其數(shù)量積等于0,代入坐標(biāo)后即可計(jì)算k的值,則直線l的方程可求
試題解析:(1)
(寫出距離公式可得1分,求得得1分,待定系數(shù)法也可以)……2分
所以,.又由已知,, ……3分所以橢圓C的離心率 …4分
(2)由(1)知橢圓C的方程為.……5分
當(dāng)直線的斜率不存在時(shí),其方程為,不妨取;
此時(shí),
,不合題意,舍去……6分
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.由……7分
得.……8分 設(shè),則
因?yàn)?/span>,所以,即
……10分
, 解得,即.…11分
故直線的方程為或. ……12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程和直線的的普通方程;
(2)設(shè)點(diǎn),若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(3)在第(2)問(wèn)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人參加某種選拔測(cè)試,在備選的10道題中,甲答對(duì)其中每道題的概率都是,乙能答對(duì)其中的5道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測(cè)試,答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,至少得15分才能入選.
(I)求乙得分的分布列和數(shù)學(xué)期望;
(II)求甲、乙兩人中至少有一人入選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】張三同學(xué)從7歲起到13歲每年生日時(shí)對(duì)自己的身高測(cè)量后記錄如下表:
年齡(歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高關(guān)于年齡的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請(qǐng)預(yù)測(cè)張三同學(xué)15歲時(shí)的身高.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos xsin 2x,下列結(jié)論中正確的是________(填入正確結(jié)論的序號(hào)).
①y=f(x)的圖象關(guān)于點(diǎn)(2π,0)中心對(duì)稱;
②y=f(x)的圖象關(guān)于直線x=π對(duì)稱;
③f(x)的最大值為;
④f(x)既是奇函數(shù),又是周期函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為的正三角形,且與底面垂直,底面是的菱形, 為的中點(diǎn).
(1)求證: ;
(2)求點(diǎn)到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的方程為+=1(a>b>0),右焦點(diǎn)為F(c,0)(c>0),方程ax2+bx-c=0的兩實(shí)根分別為x1,x2,則P(x1,x2)( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=1外
D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com