【題目】已知拋物線的方程為拋物線上一點(diǎn),為拋物線的焦點(diǎn).
(I)求;
(II)設(shè)直線與拋物線有唯一公共點(diǎn),且與直線相交于點(diǎn),試問(wèn),在坐標(biāo)平面內(nèi)是否存在點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
【答案】(I);(II)存在,.
【解析】
試題分析:(I)借助題設(shè)條件運(yùn)用拋物線的定義求解;(II)借助題設(shè)運(yùn)用直線與拋物線的位置關(guān)系及向量的數(shù)量積探求.
試題解析:
(I)由題可知,即,由拋物線的定義可知............4分
(II)法1:由關(guān)于軸對(duì)稱可知,若存在點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn),則點(diǎn)必在軸上,設(shè),又設(shè)點(diǎn),由直線與曲線有唯一公共點(diǎn)知,直線與相切由得.
,直線的方程為,
令得,點(diǎn)坐標(biāo)為,,
點(diǎn)在以為直徑的圓上,
要使方程恒成立,必須有,解得.
在坐標(biāo)平面內(nèi)存在點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn),其坐標(biāo)為...
法2:設(shè)點(diǎn),由與曲線有唯一公共點(diǎn)知,直線與相切,
由得.直線的方程為,
令得,點(diǎn)坐標(biāo)為,
以為直徑的圓的方程為: ①
分別令和,由點(diǎn)在曲線上得,
將的值分別代入①得: ②
③
②③聯(lián)立得或.
在坐標(biāo)平面內(nèi)若存在點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn),則點(diǎn)必為或,將的坐標(biāo)代入①式得,
左邊==右邊,
將的坐標(biāo)代入①式得,左邊=不恒等于0,
在坐標(biāo)平面內(nèi)若存在點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn),則點(diǎn)的坐標(biāo)為.........12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)直接寫出直線、曲線的直角坐標(biāo)方程;
(2)設(shè)曲線上的點(diǎn)到直線的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知點(diǎn),圓
(I)在極坐標(biāo)系中,以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,取相同的長(zhǎng)度單位,求圓的直角坐標(biāo)方程;
(II)求點(diǎn)到圓圓心的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn), ,并且直線平分圓.
(1)求圓的方程;
(2)若直線與圓交于兩點(diǎn),是否存在直線,使得(為坐標(biāo)原點(diǎn)),若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的頂點(diǎn)邊上的中線所在直線方程為,邊上的高所在直線的方程為.
(1)求的頂點(diǎn)的坐標(biāo);
(2)若圓經(jīng)過(guò)不同三點(diǎn),且斜率為的直線與圓相切與點(diǎn),求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取了40輛汽車在經(jīng)過(guò)路段上某點(diǎn)是的車速(),現(xiàn)將其分成六段:,
后得到如圖所示的頻率分布直方圖.
(I)現(xiàn)有某汽車途經(jīng)該點(diǎn),則其速度低于80的概率約是多少?
(II)根據(jù)頻率分布直方圖,抽取的40輛汽車經(jīng)過(guò)該點(diǎn)的平均速度是多少?
(III)在抽取的40輛汽車且速度在()內(nèi)的汽車中任取2輛,求這2輛車車速都在()內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“珠算之父”程大為是我國(guó)明代偉大數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問(wèn)世,標(biāo)志著我國(guó)的算法由籌算到珠算轉(zhuǎn)變的完成,程大位在《算法統(tǒng)綜》中常以詩(shī)歌的形式呈現(xiàn)數(shù)學(xué)問(wèn)題,其中有一首“竹筒容米”問(wèn)題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲(chǔ)三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)的容積為( )
A. 升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問(wèn)題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等,我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中, , ,沿對(duì)角線將折起,使點(diǎn)移到點(diǎn),且在平面上的射影恰好落在上.
(1)求證: ;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com