【題目】平面內(nèi)有兩個(gè)定點(diǎn)A(1,0),B(1,﹣2),設(shè)點(diǎn)P到A、B的距離分別為,且
(I)求點(diǎn)P的軌跡C的方程;
(II)是否存在過點(diǎn)A的直線與軌跡C相交于E、F兩點(diǎn),滿足(O為坐標(biāo)原點(diǎn)).若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ);(II)存在過點(diǎn)A的直線:x=1,理由見解析.
【解析】試題分析:(1)設(shè)點(diǎn) 坐標(biāo),利用兩點(diǎn)間距離公式及題中給出的等式可求得的軌跡方程。(2)分兩種情況討論:一、斜率不存在;二、斜率存在。當(dāng)斜率不存在時(shí),很容易求得三角形面積,滿足題中條件;當(dāng)斜率存在時(shí),可設(shè)直線方程,可求得 的長度,及 到的距離,利用三角形面積為 可求得直線的斜率,得直線方程。
(Ⅰ)設(shè)P(x,y),
則,d2=,
∵,∴=,
整理得: ,
∴點(diǎn)P的軌跡C的方程為 .
(II)存在過點(diǎn)A的直線,與軌跡C相交于E,F兩點(diǎn),且使三角形S△OEF.
理由如下:
①當(dāng)直線的斜率不存在時(shí),直線的方程為x=1,
直線過圓心, , 點(diǎn)到直線的距離為1,
此時(shí),,所以成立.
②當(dāng)直線斜率存在時(shí),設(shè)方程為:.
點(diǎn)到的距離,利用勾股定理,得:
.
點(diǎn)到的距離,
,
整理得,無解.所以直線斜率存在時(shí)滿足題意的直線不存在.
綜上,存在過點(diǎn)A的直線:x=1,滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分為甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每名技工加工零件若干,其中合格零件的個(gè)數(shù)如下表:
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)完成合格零件的平均數(shù)及方差,并由此分析兩組技工的技術(shù)水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測,若兩人完成合格零件個(gè)數(shù)之和超過12件,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
函數(shù).
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若,判斷的奇偶性;
(3)是否存在實(shí)數(shù),使函數(shù)在遞增,并且最大值為1,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最小值為,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,所得情況如右頻率分布直方圖.
(1)圖中縱坐標(biāo)處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個(gè)元件,壽命為之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在之間的元件中任取個(gè)元件,求事件“恰好有一個(gè)壽命為,一個(gè)壽命為”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(II)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是兩條不同直線,,是兩個(gè)不同平面,則下列命題正確的是( )
A.若,垂直于同一平面,則與平行
B.若,平行于同一平面,則與平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若,不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機(jī)抽取個(gè)進(jìn)行檢查,測得每個(gè)球的直徑(單位:),將數(shù)據(jù)進(jìn)行分組,得到如下頻率分布表:
(1)求、、及、的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標(biāo)準(zhǔn)乒乓球的直徑為,直徑誤差不超過的為五星乒乓球,若這批乒乓球共有個(gè),試估計(jì)其中五星乒乓球的數(shù)目;
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是)作為代表,估計(jì)這批乒乓球直徑的平均值和中位數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com