【題目】已知F1、F2是橢圓的左、右焦點,A是橢圓上位于第一象限內的一點,點B也在橢圓上,且滿足(O是坐標原點),若橢圓的離心率等于
(1)求直線AB的方程;
(2)若三角形ABF2的面積等于,求橢圓的方程.
科目:高中數(shù)學 來源: 題型:
【題目】某種大型醫(yī)療檢查機器生產商,對一次性購買2臺機器的客戶,推出兩種超過質保期后兩年內的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準備一次性購買2臺這種機器。現(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質保期后延保兩年內維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 10 | 20 | 15 |
以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率,記X表示這2臺機器超過質保期后延保的兩年內共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)若,求直線的普通方程及曲線的直角坐標方程;
(Ⅱ)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , , 是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知拋物線的焦點為,為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點的橫坐標為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個公共點,
(ⅰ)證明直線過定點,并求出定點坐標;
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設點的軌跡為曲線.
(1)求曲線的方程;
(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點坐標為,,過垂直于長軸的直線交橢圓于、兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與橢圓交于不同的兩點、,則的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com