【題目】已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(4-an)qn-1 (q≠0,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?/span>?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關(guān)系數(shù)
回歸方程中, , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,其中a∈R.
(I)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(II)求f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于θ的方程cosθ+sinθ+a=0在區(qū)間(0,2π)內(nèi)有相異的兩個(gè)實(shí)根α、β.
(1)求實(shí)數(shù)a的取值范圍;
(2)求α+β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較下列各組中兩個(gè)值的大小 :
(1)ln0.3,ln2; (2)loga3.1,loga5.2(a>0,且a≠1);
(3)log30.2,log40.2; (4)log3π,logπ3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法種數(shù):
(1)選其中5人排成一排
(2)全體排成一排,甲不站在排頭也不站在排尾
(3)全體排成一排,男生互不相鄰
(4)全體排成一排,甲、乙兩人中間恰好有3人
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com