(本題滿分14分)在平面直角坐標(biāo)系中,已知點A(-2,1),直線。
(1)若直線過點A,且與直線垂直,求直線的方程;
(2)若直線與直線平行,且在軸、軸上的截距之和為3,求直線的方程。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點A(0,1),AB邊上的中線CD所在直線方程為,AC邊上的高BH所在直線方程為.
(1)求的項點B、C的坐標(biāo);
(2)若圓M經(jīng)過不同的三點A、B、P(m、0),且斜率為1的直線與圓M相切于點P
求:圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過點
(1)若直線在坐標(biāo)軸上的截距相等,求直線的方程;
(2)若直線與坐標(biāo)軸的正半軸相交,求使直線在兩坐標(biāo)軸上的截距之和最小時,直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知直線l經(jīng)過點(0,-2),其傾斜角是60°.
(1)求直線l的方程;(2)求直線l與兩坐標(biāo)軸圍成三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖直線l與x軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點,P為直線l上異于A、B兩點之間的一動點. 且PQ∥OA交OB于點Q.
(1)若和四邊形的面積滿足時,請你確定P點在AB上的位置,并求出線段PQ的長;
(2)在x軸上是否存在點M,使△MPQ為等腰直角三角形,若存在,求出點與的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分) 如圖,在平面直角坐標(biāo)系xoy中,設(shè)點F(0, p)(p>0), 直線l : y= -p, 點P在直線l上移動,R是線段PF與x軸的交點, 過R、P分別作直線、,使, .
(1)求動點Q的軌跡C的方程;
(2)在直線l上任取一點M做曲線C的兩條切線,設(shè)切點為A、B,求證:直線AB恒過一定點;
(3)對(2)求證:當(dāng)直線MA, MF, MB的斜率存在時,直線MA, MF, MB的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知直線l與點A(3,3),B(5,2)的距離相等,且過兩直線l1:3x-y-1=0與l2:x+y-3=0的交點,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com