【題目】某高中學(xué)校在2015年的一次體能測(cè)試中,規(guī)定所有男生必須依次參加50米跑、立定跳遠(yuǎn)和一分鐘的引體向上三項(xiàng)測(cè)試,只有三項(xiàng)測(cè)試全部達(dá)標(biāo)才算合格,已知男生甲的50米跑和立定跳遠(yuǎn)的測(cè)試與男生乙的50米跑測(cè)試已達(dá)標(biāo),男生甲還需要參加一分鐘的引體向上測(cè)試,男生乙還需要參加立定跳遠(yuǎn)和一分鐘引體向上兩項(xiàng)測(cè)試,若甲參加一分鐘引體向上測(cè)試達(dá)標(biāo)的概率為p,乙參加立定跳遠(yuǎn)和一分鐘引體向上的測(cè)試達(dá)標(biāo)的概率均為 ,甲乙每一項(xiàng)測(cè)試是否達(dá)標(biāo)互不影響,已知甲和乙同時(shí)合格的概率為
(1)求p的值,并計(jì)算甲和乙恰有一人合格的概率;
(2)在三項(xiàng)測(cè)試項(xiàng)目中,設(shè)甲達(dá)標(biāo)的測(cè)試項(xiàng)目項(xiàng)數(shù)為x,乙達(dá)標(biāo)的測(cè)試項(xiàng)目項(xiàng)數(shù)為y,記ξ=x+y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

【答案】
(1)解:設(shè)事件A1=“甲引體向上測(cè)試達(dá)標(biāo)”,B1=“乙立定跳遠(yuǎn)測(cè)試達(dá)標(biāo)”,

B2=“乙引體向上測(cè)試達(dá)標(biāo)”,則P(A1)=p,P(B1)=P(B2)=

∵甲乙每一項(xiàng)測(cè)試是否達(dá)標(biāo)互不影響,甲和乙同時(shí)合格的概率為 ,

∴p×( 2= ,解得p= ,

設(shè)事件A=“甲測(cè)試合格”,B=“乙測(cè)試合格”,

則P(A)= ,P(B)=P(B1B2)=( 2=

∴甲和乙恰有一人合格的概率:

p=P(A )+P( B)= + =


(2)解:由已知得隨機(jī)變量x的取值為2,3,隨機(jī)變量y的取值為1,2,3,

∴ξ的可能取值為3,4,5,6,

P(ξ=3)= =

P(ξ=4)= = ,

P(ξ=5)= =

P(ξ=6)= = ,

∴隨機(jī)變量ξ的分布列為:

ξ

3

4

5

6

P

∴E(ξ)= =


【解析】(1)設(shè)事件A1=“甲引體向上測(cè)試達(dá)標(biāo)”,B1=“乙立定跳遠(yuǎn)測(cè)試達(dá)標(biāo)”,B2=“乙引體向上測(cè)試達(dá)標(biāo)”,則P(A1)=p,P(B1)=P(B2)= ,由此利用題設(shè)條件求出p= ,設(shè)事件A=“甲測(cè)試合格”,B=“乙測(cè)試合格”,則P(A)= ,P(B)=P(B1B2)= ,由此能求出甲和乙恰有一人合格的概率.(2)由已知得隨機(jī)變量x的取值為2,3,隨機(jī)變量y的取值為1,2,3,ξ的可能取值為3,4,5,6,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量ξ的分布列和E(ξ).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的奇函數(shù)f(x)的周期為4,且x∈(0,2)時(shí)f(x)=ln(x2﹣x+b),若函數(shù)f(x)在區(qū)間[﹣2,2]上恰有5個(gè)零點(diǎn),則實(shí)數(shù)b應(yīng)滿足的條件是(
A.﹣1<b≤1
B.﹣1<b<1或b=
C. <b
D. <b≤1或b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對(duì)的概率為 ,乙,丙做對(duì)的概率分別為m,n(m>n),且三位學(xué)生是否做對(duì)相互獨(dú)立.記ξ為這三位學(xué)生中做對(duì)該題的人數(shù),其分布列為:

ξ

0

1

2

3

P

a

b


(1)求至少有一位學(xué)生做對(duì)該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的命題個(gè)數(shù)是( )

. 如果共面, 也共面,共面;

.已知直線a的方向向量與平面,若// ,則直線a// ;

③若共面,則存在唯一實(shí)數(shù)使,反之也成立;

.對(duì)空間任意點(diǎn)O與不共線的三點(diǎn)A、B、C,若=x+y+z

(其中x、yz∈R),則P、A、B、C四點(diǎn)共面.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知斜三棱柱ABC﹣A1B1C1中,底面ABC是等邊三角形,側(cè)面BB1C1C是菱形,∠B1BC=60°.

(1)求證:BC⊥AB1
(2)若AB=2,AB1= ,求二面角C﹣AB1﹣C1(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ (a>0).
(1)求函數(shù)f(x)在[1,+∞)上的最小值;
(2)若存在三個(gè)不同的實(shí)數(shù)xi(i=1,2,3)滿足f(x)=ax.
(i)證明:a∈(0,1),f( )> ;
(ii)求實(shí)數(shù)a的取值范圍及x1x2x3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD為梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,滿足上述條件的四棱錐的頂點(diǎn)P的軌跡是(  )

A. 圓的一部分 B. 橢圓的一部分

C. 球的一部分 D. 拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查每天人們使用手機(jī)的時(shí)間,我校某課外興趣小組在天府廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩手機(jī)超過(guò)6小時(shí)的用戶列為“手機(jī)控”,否則稱其為“非手機(jī)控”,調(diào)查結(jié)果如下:

手機(jī)控

非手機(jī)控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100


(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“手機(jī)控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機(jī)控”和“非手機(jī)控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人,記這3人中“手機(jī)控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望. 參考公式:
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.456[

0.708

1.321

3.840

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案