已知雙曲線的離心率為,頂點(diǎn)與橢圓的焦點(diǎn)相同,那么雙曲線的焦點(diǎn)坐標(biāo)為_____;漸近線方程為_________.
.

試題分析:由于雙曲線的頂點(diǎn)坐標(biāo)為,橢圓的焦點(diǎn)坐標(biāo)為,則有,
設(shè)雙曲線的焦距為,則,故雙曲線是焦點(diǎn)坐標(biāo)為,故雙曲線的漸近線方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.

(I)求橢圓C的方程;
(II)如圖,動(dòng)直線與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且,,四邊形面積S的求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過(guò)F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標(biāo)原點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,左焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與曲線交于不同的、兩點(diǎn),且線段的中點(diǎn)在圓 上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知得頂點(diǎn)、分別是離心率為的圓錐曲線的焦點(diǎn),頂點(diǎn)在該曲線上,一同學(xué)已正確地推得,當(dāng)時(shí)有 ,類似地,當(dāng)時(shí),有               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,設(shè)橢圓的左右焦點(diǎn)分別為,過(guò)焦點(diǎn)的直線交橢圓于兩點(diǎn),若的內(nèi)切圓的面積為,設(shè)兩點(diǎn)的坐標(biāo)分別為,則值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1、F2分別是橢圓的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實(shí)數(shù)k的取值范圍是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案