【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2ACAB,若四面體P﹣ABC的體積為,則該球的體積為_____.
【答案】
【解析】
根據(jù)四面體是球的內(nèi)接四面體,結(jié)合位置關(guān)系,可得棱錐的形狀,以及棱長(zhǎng)之間的關(guān)系,利用體積公式即可代值計(jì)算.
設(shè)該球的半徑為R,則AB=2R,2ACAB2R,
∴ACR,
由于AB是球的直徑,所以△ABC在大圓所在平面內(nèi)且有AC⊥BC,
在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,
所以Rt△ABC面積SBC×ACR2,
又PO⊥平面ABC,且PO=R,四面體P﹣ABC的體積為,
∴VP﹣ABCRR2,即R3=9,R3=3,
所以:球的體積V πR3π×34π.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一青蛙從點(diǎn)開(kāi)始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點(diǎn)到點(diǎn)所經(jīng)過(guò)的路程.
(1)若點(diǎn)為拋物線()準(zhǔn)線上一點(diǎn),點(diǎn)均在該拋物線上,并且直線經(jīng)過(guò)該拋物線的焦點(diǎn),證明.
(2)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫(xiě)出(不需證明);
(3)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的動(dòng)弦過(guò)點(diǎn),過(guò)點(diǎn)且垂直于弦的直線交拋物線的準(zhǔn)線于點(diǎn).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn)、.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)點(diǎn)是線段的中點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的短軸長(zhǎng)和焦距相等,左、右焦點(diǎn)分別為、,點(diǎn)滿足:.已知直線l與橢圓C相交于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過(guò)點(diǎn),且,求直線l的方程;
(3)若直線l與曲線相切于點(diǎn)(),且中點(diǎn)的橫坐標(biāo)等于,證明:符合題意的點(diǎn)T有兩個(gè),并任求出其中一個(gè)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和為Tn(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn).這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;
(2)設(shè).試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn), 為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問(wèn):在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com