(2012•閔行區(qū)一模)已知△ABC的面積為1,在△ABC所在的平面內(nèi)有兩點(diǎn)P、Q,滿足
PA
+
PC
=
0
QA
+
QB
+
QC
=
BC
,則四邊形BCPQ的面積為
2
3
2
3
分析:根據(jù)題中的向量等式,結(jié)合向量的線性運(yùn)算可得:點(diǎn)P是線段AC的中點(diǎn)且Q是線段AB的靠近B點(diǎn)的三等分點(diǎn).由此結(jié)合正弦定理的面積公式,算出S△APQ=
1
3
=S△ABC=
1
3
,即可得到則四邊形BCPQ的面積.
解答:解:∵點(diǎn)P滿足
PA
+
PC
=
0

PA
=-
PC
,可得點(diǎn)P是線段AC的中點(diǎn)
又∵
QA
+
QB
+
QC
=
BC

QA
=
BC
+
CQ
+
BQ
=2
BQ

可得Q是線段AB的靠近B點(diǎn)的三等分點(diǎn)
因此,△APQ的面積為
S△APQ=
1
2
|
AP
|•|
AQ
|sinA=
1
2
1
2
|
AC
|•
2
3
|
AB
|=
1
3
S△ABC
∵△ABC的面積為1,∴S△APQ=
1
3

由此可得四邊形BCPQ的面積為S=S△ABC-S△APQ=1-
1
3
=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題在△ABC中給出兩個(gè)向量的等式,求四邊形BCPQ的面積.著重考查了平面向量的線性運(yùn)算和運(yùn)用正弦定理求三角形面積等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)等差數(shù)列{an}的首項(xiàng)及公差均是正整數(shù),前n項(xiàng)和為Sn,且a1>1,a4>6,S3≤12,則a2012=
4024
4024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)在一圓周上給定1000個(gè)點(diǎn).(如圖)取其中一點(diǎn)標(biāo)記上數(shù)1,從這點(diǎn)開(kāi)始按順時(shí)針?lè)较驍?shù)到第二個(gè)點(diǎn)標(biāo)記上數(shù)2,從標(biāo)記上2的點(diǎn)開(kāi)始按順時(shí)針?lè)较驍?shù)到第三個(gè)點(diǎn)標(biāo)記上數(shù)3,繼續(xù)這個(gè)過(guò)程直到1,2,3,…,2012都被標(biāo)記到點(diǎn)上,圓周上這些點(diǎn)中有些可能會(huì)標(biāo)記上不止一個(gè)數(shù),在標(biāo)記上2012的那一點(diǎn)上的所有標(biāo)記的數(shù)中最小的是
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)x1、x2是關(guān)于x的方程x2+mx+
1+m2
=0
的兩個(gè)不相等的實(shí)數(shù)根,那么過(guò)兩點(diǎn)A(x1
x
2
1
)
,B(x2,
x
2
2
)
的直線與圓x2+y2=1的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長(zhǎng)為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)將邊長(zhǎng)分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個(gè)、第2個(gè)、…、第n個(gè)陰影部分圖形.容易知道第1個(gè)陰影部分圖形的周長(zhǎng)為8.設(shè)前n個(gè)陰影部分圖形的周長(zhǎng)的平均值為f(n),記數(shù)列{an}滿足an=
f(n),當(dāng)n為奇數(shù)
f(an-1) ,當(dāng)n為偶數(shù)

(1)求f(n)的表達(dá)式;
(2)寫(xiě)出a1,a2,a3的值,并求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案