【題目】如圖,在梯形中,,,,平面平面,四邊形是菱形,

1)求證:;

2)求多面體被平面分成兩部分的體積比.

【答案】1)證明見解析 212

【解析】

1)根據(jù)線段及,可求得,由勾股定理逆定理可證明;由平面與平面垂直的性質(zhì)可得,連接CF,由菱形性質(zhì)可得,即可得平面,因而.

2)由點(diǎn)D向線段AC做垂線,垂足為M,則點(diǎn)MAC中點(diǎn),可得平面,分別求得即可得兩部分的體積比.

1)證明:在等腰梯形中,由,,

可得,

,即,

∵平面平面,

平面,而平面,

連接CF,∵四邊形是菱形,

,

,

平面,

平面,

;

2)∵,由點(diǎn)D向線段AC做垂線,垂足為M,則點(diǎn)MAC中點(diǎn),如下圖所示:

∵平面平面,交線為AC,

平面,

,

∴多面體EFABCD被平面ACEF分成兩部分的體積比為12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)當(dāng)上的最小值是時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù),當(dāng)時(shí),,當(dāng)時(shí),.關(guān)于偶函數(shù)的圖象和直線個(gè)命題如下:

當(dāng)時(shí),存在直線與圖象恰有個(gè)公共點(diǎn);

若對(duì)于,直線與圖象的公共點(diǎn)不超過個(gè),則;

,,使得直線與圖象交于個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.

其中正確命題的序號(hào)是( ).

A. ①②B. ①③C. ②③D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

已知在全部105人中隨機(jī)抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(  )

A. 列聯(lián)表中的值為30,的值為35

B. 列聯(lián)表中的值為15,的值為50

C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認(rèn)為“成績與班級(jí)有關(guān)系”

D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認(rèn)為“成績與班級(jí)有關(guān)系”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過點(diǎn)作直線的垂線,交直線于點(diǎn).記過、、三點(diǎn)的圓為圓

1)求圓的方程;

2)求過點(diǎn)與圓相交所得弦長為的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案