【題目】已知函數(shù)f0(x)= (x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.
(1)求2f1+f2的值;
(2)證明:對(duì)任意的n∈N*,等式=都成立.
【答案】(1);(2)詳見(jiàn)解析.
【解析】
(1)由于求兩個(gè)函數(shù)的相除的導(dǎo)數(shù)比較麻煩,根據(jù)條件和結(jié)論先將原函數(shù)化為:xf0(x)=sinx,然后兩邊求導(dǎo)后根據(jù)條件兩邊再求導(dǎo)得:2f1(x)+xf2(x)=﹣sinx,把x= 代入式子求值;
(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再對(duì)所得的式子兩邊再求導(dǎo),并利用誘導(dǎo)公式對(duì)所得式子進(jìn)行化簡(jiǎn)、歸納,再進(jìn)行猜想得到等式,用數(shù)學(xué)歸納法進(jìn)行證明等式成立,主要利用假設(shè)的條件、誘導(dǎo)公式、求導(dǎo)公式以及題意進(jìn)行證明,最后再把x=代入所給的式子求解驗(yàn)證.
解: (1)由已知,得f1(x)=f′0(x)=,
于是f2(x)=f1′(x)==,
所以,.
故=-1.
(2)證明:由已知得,xf0(x)=sin x,等式兩邊分別對(duì)x求導(dǎo),得f0(x)+xf0′(x)=cos x,
即f0(x)+xf1(x)=cos x=.
類(lèi)似可得
2f1(x)+xf2(x)=-sin x=sin(x+π),
3f2(x)+xf3(x)=-cos x=,
4f3(x)+xf4(x)=sin x=sin(x+2π).
下面用數(shù)學(xué)歸納法證明等式nfn-1(x)+xfn(x)=對(duì)所有的n∈N*都成立.
(i)當(dāng)n=1時(shí),由上可知等式成立.
(ii)假設(shè)當(dāng)n=k時(shí)等式成立,即kfk-1(x)+xfk(x)=.
因?yàn)閇kfk-1(x)+xfk(x)]′=kfk-1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x),
,
所以(k+1)fk(x)+xfk+1(x)=,
因此當(dāng)n=k+1時(shí),等式也成立.
綜合(i)(ii)可知,等式nfn-1(x)+xfn(x)=對(duì)所有的n∈N*都成立.
令x= ,可得
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動(dòng)的時(shí)長(zhǎng),隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動(dòng)的總時(shí)長(zhǎng)(單位:小時(shí)),按照共6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動(dòng)的時(shí)長(zhǎng)的統(tǒng)計(jì)如下(表1、2),規(guī)定每周運(yùn)動(dòng)15小時(shí)以上(含15小時(shí))的稱(chēng)為“運(yùn)動(dòng)合格者”,其中每周運(yùn)動(dòng)25小時(shí)以上(含25小時(shí))的稱(chēng)為“運(yùn)動(dòng)達(dá)人”.
表1:男生
時(shí)長(zhǎng) | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時(shí)長(zhǎng) | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運(yùn)動(dòng)時(shí)長(zhǎng)不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動(dòng)達(dá)人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).
每周運(yùn)動(dòng)的時(shí)長(zhǎng)小于15小時(shí) | 每周運(yùn)動(dòng)的時(shí)長(zhǎng)不小于15小時(shí) | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn) 與上頂點(diǎn)的距離為.
(Ⅰ)求橢圓的方程和焦點(diǎn)的坐標(biāo);
(Ⅱ)點(diǎn)在橢圓上,線(xiàn)段的垂直平分線(xiàn)與軸相交于點(diǎn),若為等邊三角形,求點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大指出中國(guó)的電動(dòng)汽車(chē)革命早已展開(kāi),通過(guò)以新能源汽車(chē)替代汽/柴油車(chē),中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車(chē)行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車(chē)生產(chǎn)設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本2500萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車(chē)售價(jià)5萬(wàn)元,且全年內(nèi)生產(chǎn)的車(chē)輛當(dāng)年能全部銷(xiāo)售完.
(1)求出2018年的利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績(jī),得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.
(1)下表是這次抽查成績(jī)的頻數(shù)分布表,試求正整數(shù)、的值;
區(qū)間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數(shù) | 50 | a | 350 | 300 | b |
(2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績(jī)進(jìn)行分析,求抽取成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);
(3)在根據(jù)(2)抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加座談會(huì),記其中成績(jī)?yōu)閮?yōu)秀的人數(shù)為X,求X的分布列與數(shù)學(xué)期望(即均值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無(wú)需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:
(1)計(jì)算值;
(2)以此樣本的頻率作為概率,求
①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;
②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與有相同的極值點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),求的值;
(2)記.
①若在區(qū)間(為自然對(duì)數(shù)底數(shù))上至少存在一點(diǎn),使得成立,求的取值范圍;
②若函數(shù)圖象存在兩條經(jīng)過(guò)原點(diǎn)的切線(xiàn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的一個(gè)側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com