已知m,n是空間兩條不同的直線,α,β,γ是三個不同的平面,則下列命題中為真的是( )
A.若α∥β,m?α,n?β,則m∥n
B.若α∩γ=m,β∩γ=n,m∥n,則α∥β
C.若m?β,α⊥β,則m⊥α
D.若m⊥β,m∥α,則α⊥β
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時練習(xí)卷(解析版) 題型:填空題
在△ABC中,角A,B,C所對的邊分別為a,b,c,有下列命題:①在△ABC中,A>B是sinA>sinB的充分不必要條件;②在△ABC中,A>B是cosA<cosB的充要條件;③在△ABC中,A>B是tanA>tanB的必要不充分條件.其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:選擇題
已知M(x0,y0)為圓x2+y2=a2(a>0)內(nèi)異于圓心的一點(diǎn),則直線x0x+y0y=a2與該圓的位置關(guān)系是( )
A.相切 B.相交 C.相離 D.相切或相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題
“φ=π”是“曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn)”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:填空題
如圖所示,在正三角形ABC中,D,E,F分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:選擇題
設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面.則下列結(jié)論中正確的是( )
A.若m∥α,n∥α,則m∥n
B.若m∥α,m∥β,則α∥β
C.若m∥n,m⊥α,則n⊥α
D.若m∥α,α⊥β,則m⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=則f(f(9))=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題三練習(xí)卷(解析版) 題型:選擇題
在△ABC中,a2+b2+c2=2absin C,則△ABC的形狀是( )
A.直角三角形 B.銳角三角形 C.鈍角三角形 D.正三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集9講練習(xí)卷(解析版) 題型:解答題
在數(shù)列{an}和等比數(shù)列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求數(shù)列{bn}及{an}的通項公式;
(2)若cn=an·bn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com