在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,有下列命題:①在△ABC中,A>B是sinA>sinB的充分不必要條件;②在△ABC中,A>B是cosA<cosB的充要條件;③在△ABC中,A>B是tanA>tanB的必要不充分條件.其中正確命題的序號(hào)為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知cos α=,cos(α+β)=-,且α,β∈,則cos(α-β)的值等于( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第4課時(shí)練習(xí)卷(解析版) 題型:選擇題
若點(diǎn)(x,y)位于曲線y=|x|與y=2所圍成的封閉區(qū)域,則2x-y的最小值是( )
A.-6 B.-2
C.0 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2+(x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知偶函數(shù)f(x)當(dāng)x∈[0,+∞)時(shí)是單調(diào)遞增函數(shù),則滿足f()<f(x)的x的取值范圍是( )
A.(2,+∞) B.(-∞,-1)
C.[-2,-1)∪(2,+∞) D.(-1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知命題p:x2+2x-3>0;命題q:x>a,且?q的一個(gè)充分不必要條件是?p,則a的取值范圍是( )
A.a≥1 B.a≤1
C.a≥-1 D.a≤-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知M={a||a|≥2},A={a|(a-2)(a2-3)=0,a∈M},則集合A的子集共有( )
A.1個(gè) B.2個(gè)
C.4個(gè) D.8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:選擇題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,則5a1+a7的值為( )
A.12 B.10 C.24 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:選擇題
已知m,n是空間兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題中為真的是( )
A.若α∥β,m?α,n?β,則m∥n
B.若α∩γ=m,β∩γ=n,m∥n,則α∥β
C.若m?β,α⊥β,則m⊥α
D.若m⊥β,m∥α,則α⊥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com