精英家教網 > 高中數學 > 題目詳情
橢圓上一點,分別是左、右焦點,若,則P到右準線的距離是  (   )
A.15B.10 C.12D.20
A
本題考查橢圓的兩個定義.
設點到右準線的距離為,則由橢圓方程知:
;所以故選A
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知橢圓C,直線過點P交橢圓CA、B兩點.
(1)若PAB中點,求直線的方程及弦AB的長;
(2)求弦AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓,直線,F為橢圓的右焦點,M為橢圓上任意一點,記M到直線L的距離為d.

(Ⅰ) 求證:為定值;
(Ⅱ) 設過右焦點F的直線m的傾斜角為,m交橢圓于A、B兩點,且,求的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分16分)已知橢圓(a>b>0)
(1)當橢圓的離心率,一條準線方程為x=4 時,求橢圓方程;
(2)設是橢圓上一點,在(1)的條件下,求的最大值及相應的P點坐標。
(3)過B(0,-b)作橢圓(a>b>0)的弦,若弦長的最大值不是2b,求橢圓離心率的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓+ =1的兩焦點為F1、F2,點P在橢圓上,且直線PF1、PF2的夾角為,則△PF1F2的面積為

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓上的點到一條準線距離的最小值恰好等于該橢圓半焦距,則此橢圓的離心率是  ▲   

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的兩個焦點為F1,F2,P為橢圓上一點,且∠F1PF2=60°,則|PF1|·|PF2|的值為             

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則  ▲   

查看答案和解析>>

同步練習冊答案