【題目】經(jīng)觀測,某公路段在某時(shí)段內(nèi)的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:

1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí)車流量最大?最大車流量為多少?(精確到0.01)

2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

【答案】(1)v40千米/小時(shí),車流量最大,最大值為11.08千輛/小時(shí)(2)汽車的平均速度應(yīng)控制在25≤v≤64這個(gè)范圍內(nèi)

【解析】

1)將已知函數(shù)化簡,利用基本不等式求車流量y最大值;
2)要使該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),即使,解之即可得汽車的平均速度的控制范圍.

:(1)≈11.08,

當(dāng)v,即v40千米/小時(shí),車流量最大,最大值為11.08千輛/小時(shí).

(2)據(jù)題意有:,

化簡得,即,

所以,

所以汽車的平均速度應(yīng)控制在這個(gè)范圍內(nèi).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,其離心率,焦距為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)若是橢圓上不重合的四個(gè)點(diǎn),且滿足,,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)().

(1)判斷函數(shù)的奇偶性并說明理由;

(2)是否存在實(shí)數(shù),使得當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),點(diǎn)為一定點(diǎn),直線分別與函數(shù)的圖象和軸交于點(diǎn),,記的面積為

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),若,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求ab的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時(shí),恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).現(xiàn)有如下兩種圖象變換方案:

方案1:將函數(shù)的圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,再將所得圖象向左平移個(gè)單位長度;

方案2:將函數(shù)的圖象向左平移個(gè)單位長度,再將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话耄v坐標(biāo)不變.

請你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:

1)畫出函數(shù)在長度為一個(gè)周期的閉區(qū)間上的圖象;

2)請你研究函數(shù)的定義域,值域,周期性,奇偶性以及單調(diào)性,并寫出你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某權(quán)威機(jī)構(gòu)發(fā)布了2014年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,該市某校學(xué)生會(huì)組織部分同學(xué),用“10分制”隨機(jī)調(diào)查“陽光”社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@16人中隨機(jī)選取3人,至多有1人是“極幸福”的概率;

(3)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“極幸!钡娜藬(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】魯班鎖是中國古代傳統(tǒng)土木建筑中常用的固定結(jié)合器,也是廣泛流傳于中國民間的智力玩具,它起源于古代中國建筑首創(chuàng)的榫卯結(jié)構(gòu).這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看上去是嚴(yán)絲合縫的十字幾何體,其上下左右前后完全對稱,十分巧妙.魯班鎖的種類各式各樣,其中以最常見的六根和九根的魯班鎖最為著名.九根的魯班鎖由如圖所示的九根木榫拼成,每根木榫都是由一根正四棱柱狀的木條挖一些凹槽而成.若九根正四棱柱底面邊長均為1,其中六根最短條的高均為3,三根長條的高均為5,現(xiàn)將拼好的魯班鎖放進(jìn)一個(gè)球形容器內(nèi),使魯班鎖最高的三個(gè)正四棱柱形木榫的上下底面頂點(diǎn)分別在球面上,則該球形容器的表面積(容器壁的厚度忽略不計(jì))的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn)。當(dāng)三角形三個(gè)內(nèi)角均小于時(shí),費(fèi)馬點(diǎn)與三個(gè)頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________

查看答案和解析>>

同步練習(xí)冊答案