【題目】為了解某初中學校學生睡眠狀況,在該校全體學生中隨機抽取了容量為120的樣本,統(tǒng)計睡眠時間(單位:.經統(tǒng)計,時間均在區(qū)間內,將其按,,,分成6組,制成如圖所示的頻率分布直方圖:

1)世界衛(wèi)生組織表明,該年齡段的學生睡眠時間服從正態(tài)分布,其標準為:該年齡段的學生睡眠時間的平均值,方差.根據(jù)原則,用樣本估計總體,判斷該初中學校學生睡眠時間在區(qū)間上是否達標?

(參考公式:,

2)若規(guī)定睡眠時間不低于為優(yōu)質睡眠.已知所抽取的這120名學生中,男、女睡眠質量人數(shù)如下列聯(lián)表所示:

優(yōu)質睡眠

非優(yōu)質睡眠

合計

60

19

合計

將列聯(lián)表數(shù)據(jù)補充完整,并判斷是否有的把握認為優(yōu)質睡眠與性別有關系,并說明理由;

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.

【答案】1)該校學生睡眠時間在區(qū)間上不達標;(2)列聯(lián)表見解析,有的把握認為優(yōu)質睡眠與性別有關系;理由見解析

【解析】

1)根據(jù)頻率分布直方圖求出,求出.根據(jù)頻率分布直方圖求出學生睡眠時間在區(qū)間上的概率,與比較大小,即得答案;

2)求出樣本中優(yōu)質睡眠學生的人數(shù),補全列聯(lián)表,計算,根據(jù)臨界值表可得結論.

1)根據(jù)直方圖數(shù)據(jù),有,

解得.

由平均值,樣本方差,得,

即求樣本數(shù)據(jù)中區(qū)間內的概率值,

,

該校學生睡眠時間在區(qū)間上不達標.

2)根據(jù)直方圖可知,樣本中優(yōu)質睡眠學生有,列聯(lián)表如下:

優(yōu)質睡眠

非優(yōu)質睡眠

合計

11

60

71

19

30

49

合計

30

90

120

可得,

所以,有的把握認為優(yōu)質睡眠與性別有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右焦點為,以原點為圓心,短半軸長為半徑的圓恰好經過橢圓的兩焦點,且該圓截直線所得的弦長為.

1)求橢圓的標準方程;

2)過定點的直線交橢圓于兩點、,橢圓上的點滿足,試求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足

1)求數(shù)列的通項公式;

2)設,數(shù)列的前項和為,求;

3)設,問:是否存在非零整數(shù),使數(shù)列為遞增數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)).

1)求曲線的參數(shù)方程與直線的普通方程;

2)設點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點的曲線的方程為

(Ⅰ)求曲線的標準方程:

(Ⅱ)已知點,為直線上任意一點,過的垂線交曲線于點,

(。┳C明:平分線段(其中為坐標原點);

(ⅱ)求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)fx)在其圖象上存在不同的兩點Ax1,y1),Bx2,y2),其坐標滿足條件:|x1x2+y1y2|的最大值為0,則稱fx)為“柯西函數(shù)”,則下列函數(shù):

fx)=xx0);

fx)=lnx0x3);

fx)=cosx;

fx)=x21.

其中為“柯西函數(shù)”的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fxx2+ax+lnxaR

1)討論函數(shù)fx)的單調性;

2)若fx)存在兩個極值點x1,x2|x1x2|,求|fx1)﹣fx2|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從2011年到2018年參加北約”“華約考試而獲得加分的學生(每位學生只能參加北約”“華約中的一種考試)人數(shù)可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推)

年份

1

2

3

4

5

6

7

8

人數(shù)

2

3

4

4

7

7

6

6

1)求這八年來,該校參加北約”“華約考試而獲得加分的學生人數(shù)的中位數(shù)和方差;

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出之間的線性回歸方程,并依此預測該校2019年參加北約”“華約考試而獲得加分的學生人數(shù).(結果要求四舍五入至個位)

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某流行病爆發(fā)期間,某市衛(wèi)生防疫部門給出的治療方案中推薦了三種治療藥物,,,,的使用是互斥且完備的),并且感染患者按規(guī)定都得到了藥物治療.患者在關于這三種藥物的有關參數(shù)及市場調查數(shù)據(jù)如下表所示:(表中的數(shù)據(jù)都以一個療程計)

藥物

單價(單位:元)

600

1000

800

治愈率

市場使用量(單位:人)

305

122

183

(Ⅰ)從感染患者中任取一人,試求其一個療程被治愈的概率大約是多少?

(Ⅱ)試估算每名感染患者在一個療程的藥物治療費用平均是多少.

查看答案和解析>>

同步練習冊答案