已知函數(shù),其中。
(1)當(dāng)a=1時(shí),求它的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論它的單調(diào)性;
(3)若恒成立,求的取值范圍.
(1) (2)當(dāng)得,單調(diào)增區(qū)間為;當(dāng)得,單調(diào)減區(qū)間為;當(dāng)時(shí),單調(diào)增區(qū)間為,單調(diào)減區(qū)間為. (3)
解析試題分析:(1)當(dāng)時(shí),,對(duì)稱軸方程為,
在對(duì)稱軸方程內(nèi),則的單調(diào)減區(qū)間為;
單調(diào)減區(qū)間為 5分
(2),對(duì)稱軸方程為,
下面分三種情況討論:
當(dāng)得,單調(diào)增區(qū)間為;
當(dāng)得,單調(diào)減區(qū)間為;
當(dāng)時(shí),單調(diào)增區(qū)間為,單調(diào)減區(qū)間為. 10分
(3)當(dāng)時(shí),有恒成立,
等價(jià)于,只要,
而, 15分
考點(diǎn):本題考查了函數(shù)的性質(zhì)
點(diǎn)評(píng):對(duì)于二次函數(shù)f(x)=ax2+bx+c=0(a≠0)在實(shí)數(shù)集R上恒成立問(wèn)題可利用判別式直接求解,即 f(x)>0恒成立;f(x)<0恒成立.若是二次函數(shù)在指定區(qū)間上的恒成立問(wèn)題,還可以利用韋達(dá)定理以及根與系數(shù)的分布知識(shí)求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) .
(1)求函數(shù)的零點(diǎn);
(2)若方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)證明:對(duì)于一切的實(shí)數(shù)x都有f(x)x;
(2)若函數(shù)存在兩個(gè)零點(diǎn),求a的取值范圍
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)都在區(qū)間上有定義,對(duì)任意,都有成立,則稱函數(shù)為區(qū)間上的“伙伴函數(shù)”
(1)若為區(qū)間上的“伙伴函數(shù)”,求的范圍。
(2)判斷是否為區(qū)間上的“伙伴函數(shù)”?
(3)若為區(qū)間上的“伙伴函數(shù)”,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),設(shè)
(1)求的單調(diào)區(qū)間;
(2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值;
(3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于定義在實(shí)數(shù)集上的兩個(gè)函數(shù),若存在一次函數(shù)使得,對(duì)任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知(,為自然對(duì)數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)是否存在過(guò)點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,
OC=OE=4,DB⊥DC,直線AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交
于M.點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿足條件
的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成
為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/b/18qxf3.png" style="vertical-align:middle;" />,
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/5/ydkr32.png" style="vertical-align:middle;" />.
(1)求.
(2)記 ,若是的必要不充分條件,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足對(duì)一切都有,且,當(dāng)時(shí)有.
(1)求的值;
(2)判斷并證明函數(shù)在上的單調(diào)性;
(3)解不等式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com