【題目】如圖, 為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.

(1)求證:平面平面

(2)求平面 與平面所成的角的正弦值.

【答案】(1)證明見解析;(2).

【解析】

試題分析:(1)借助題設(shè)條件運用面面垂直的判定定理推證;(2)借助題設(shè)借助面面角的定義運用解三角形探求.

試題解析:

(1)解:如圖,取線段、的中點,連接.為正三角形, 的中點, 平面平面,且平面平面平面平面.分別為的中點,. 又由已知有,

,從而四邊形為平行四邊形, 進而有平面 平面平面平面.

(2)由(1)可知四邊形為直角梯形, 延長、交于點,連接,則平面平面.平面平面,且平面平面.

易知是線段的中點, ,從而,平面,就是平面與平面所成的銳二面角的平面角, 所求角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點到兩點,的距離之和等于4,設(shè)點的軌跡為,直線交于兩點,

(1)寫出的方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為:為常數(shù)).

(Ⅰ)判斷曲線的形狀;

(Ⅱ)設(shè)直線與曲線交于不同的兩點、,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,

1)若為等邊三角形,求橢圓的方程;

2)若橢圓的短軸長為2,過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上的動點, ,為定點,

(1)求線段中點M的軌跡方程;

(2)若,求線段中點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面為等邊三角形,

,,分別為的中點.

(I)求證:平面

(II)求證:平面平面

(III)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間四邊形ABCD中,E,F,GH分別是ABBCCD,DA上的點,且滿足

(1)求證:四邊形EFGH是梯形;

(2)若BDa,求梯形EFGH的中位線的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左、右焦點分別為、,且經(jīng)過點

I)求橢圓C的方程:

II)直線y=kx(kR,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

查看答案和解析>>

同步練習(xí)冊答案