【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值是( )
A.10 B.11 C.12 D.13
【答案】A
【解析】解:第1次執(zhí)行循環(huán)體后,S=2,k=2,不滿足退出循環(huán)的條件,
第2次執(zhí)行循環(huán)體后,S=6,k=3,不滿足退出循環(huán)的條件,
第3次執(zhí)行循環(huán)體后,S=14,k=4,不滿足退出循環(huán)的條件,
第4次執(zhí)行循環(huán)體后,S=30,k=5,不滿足退出循環(huán)的條件,
第5次執(zhí)行循環(huán)體后,S=62,k=6,不滿足退出循環(huán)的條件,
第6次執(zhí)行循環(huán)體后,S=126,k=7,不滿足退出循環(huán)的條件,
第7次執(zhí)行循環(huán)體后,S=510,k=8,不滿足退出循環(huán)的條件,
第8次執(zhí)行循環(huán)體后,S=1022,k=9,不滿足退出循環(huán)的條件,
第9次執(zhí)行循環(huán)體后,S=2046,k=10,滿足退出循環(huán)的條件,
故輸出的k值為10,
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某同學(xué)在素質(zhì)教育基地通過自己設(shè)計(jì)、選料、制作,打磨出了一個(gè)作品,作品由三根木棒,,組成,三根木棒有相同的端點(diǎn)(粗細(xì)忽略不計(jì)),且四點(diǎn)在同一平面內(nèi),,,木棒可繞點(diǎn)O任意旋轉(zhuǎn),設(shè)BC的中點(diǎn)為D.
(1)當(dāng)時(shí),求OD的長(zhǎng);
(2)當(dāng)木棒OC繞點(diǎn)O任意旋轉(zhuǎn)時(shí),求AD的長(zhǎng)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,且在橢圓E上.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)已知垂直于x軸的直線交E于A、B兩點(diǎn),垂直于y軸的直線交E于C、D兩點(diǎn),與的交點(diǎn)為P,且,間:是否存在兩定點(diǎn)M,N,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過點(diǎn),傾斜角為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式;
(2)已知直線交曲線于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在處切線垂直于軸.
(1)求的值;
(2)求函數(shù)在上的最小值;
(3)若恒成立,求滿足條件的整數(shù)的最大值.
(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽曾創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個(gè)全等的直角三角形與中間的小正方形拼成一個(gè)大正方形,其中一個(gè)直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機(jī)投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點(diǎn)為,,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓于P,M兩點(diǎn).
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形所在平面與底面垂直,在直角梯形中,,,,.
(1)求證:平面;
(2)求證:平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是圓F1:(x+1)2+y2=16上任意一點(diǎn),F2(1,0),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)記曲線C與x軸交于A,B兩點(diǎn),M是直線x=1上任意一點(diǎn),直線MA,MB與曲線C的另一個(gè)交點(diǎn)分別為D,E,求證:直線DE過定點(diǎn)H(4,0).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com