在中,邊、、分別是角、、的對邊,且滿足
(1)求;
(2)若,,求邊,的值.
(1) (2)或.
解析試題分析:(1)根據(jù)正弦定理把已知等式轉(zhuǎn)化為角的三角函數(shù)式,然后再化簡整理,可得.即可得出的值;(2)應(yīng)用向量的數(shù)量積公式把轉(zhuǎn)化為關(guān)于邊的等式,即. ①;然后再利用余弦公式表示出,整理得到. ②,解①和②組成的方程組,即可得到a,c的值.
試題解析:解:(1)由正弦定理和,得
, 2分
化簡,得
即, 4分
故.
所以. 5分
(2)因為,所以
所以,即. (1) 7分
又因為,
整理得,. (2) 9分
聯(lián)立(1)(2) ,解得或. 10分
考點:1.正弦定理和余弦定理;2.向量的數(shù)量積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在海岸線一側(cè)C處有一個美麗的小島,某旅游公司為方便游客,在上設(shè)立了A、B兩個報名點,滿足A、B、C中任意兩點間的距離為10千米。公司擬按以下思路運作:先將A、B兩處游客分別乘車集中到AB之間的中轉(zhuǎn)點D處(點D異于A、B兩點),然后乘同一艘游輪前往C島。據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費2元,游輪每千米耗費12元。設(shè)∠,每批游客從各自報名點到C島所需運輸成本S元。
⑴寫出S關(guān)于的函數(shù)表達式,并指出的取值范圍;
⑵問中轉(zhuǎn)點D距離A處多遠時,S最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位有、、三個工作點,需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,,.假定、、、四點在同一平面內(nèi).
(Ⅰ)求的大小;
(Ⅱ)求點到直線的距
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,其中ω>0,函數(shù),若相鄰兩對稱軸間的距離為.
(1)求ω的值;
(2)在△ABC中,a、b、c分別是A、B、C所對的邊,,△ABC的面積S=5,b=4,,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;
(Ⅱ)中,,角所對的邊分別是,且,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com