【題目】設(shè)函數(shù) = .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個零點.

(1)求滿足條件的最小正整數(shù)的值;

(2)求證: .

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;

(Ⅱ)(1)3;(2)見解析.

【解析】試題分析:

(Ⅰ)求單調(diào)區(qū)間,只要求得導(dǎo)數(shù),通過討論的范圍()可解不等式和不等式,從而得單調(diào)區(qū)間;

(Ⅱ)(1)求得,由有兩個零點得, 的最小值為,且, 由此可得,由函數(shù)是增函數(shù),通過估值可得最小正整數(shù)的值;(2)證明,設(shè),由,可把表示,不等式中的可替換,然后變形為的不等式,設(shè),則,只要證相應(yīng)地關(guān)于的不等式在上成立,這又可用導(dǎo)數(shù)研究相應(yīng)的函數(shù)得出.

試題解析:

(Ⅰ)

當(dāng)時, 上恒成立,所以函數(shù)單調(diào)遞增區(qū)間為,

此時 無單調(diào)減區(qū)間.

當(dāng)時,由,得, ,得,

所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)(1)

因為函數(shù)有兩個零點,所以,此時函數(shù)單調(diào)遞增, 在單調(diào)遞減.

所以的最小值,即.

因為,所以.

,顯然上為增函數(shù),且

,所以存在.

當(dāng)時, ;當(dāng)時, ,所以滿足條件的最小正整數(shù).

又當(dāng)時, ,所以時, 有兩個零點.

綜上所述,滿足條件的最小正整數(shù)的值為3.

(2)證明 :不妨設(shè),于是

,

所以.

因為,當(dāng)時, ,當(dāng)時, ,

故只要證即可,即證明

即證,

也就是證.

設(shè)

,則.

因為,所以,

當(dāng)且僅當(dāng)時, ,

所以上是增函數(shù).

,所以當(dāng)總成立,所以原題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓的左右焦點,與橢圓在第一象限的交點為,且, , 三點共線.

(1)求橢圓的方程;

(2)設(shè)與直線為原點)平行的直線交橢圓兩點,當(dāng)的面積取取最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的三個內(nèi)角的對邊長分別為,的外接圓半徑,則下列四個條件

(1); (2);

(3); (4).

有兩個結(jié)論:甲:是等邊三角形; 乙:是等腰直角三角形.

請你選出給定的四個條件中的兩個為條件,兩個結(jié)論中的一個為結(jié)論,寫出一個你認(rèn)為正確的命題__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.

(1)求接到救援命令時救援船距漁船的距離;

(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對稱軸間的距離是 .若將函數(shù)f(x)的圖象向右平移 個單位,再把圖象上每個點的橫坐標(biāo)縮小為原來的一半,得到g(x),則g(x)的解析式為(
A.g(x)=sin(4x+
B.g(x)=sin(8x﹣ )??
C.g(x)=sin(x+
D.g(x)=sin4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線平行于直線,求a的值;

(2)討論函數(shù)的單調(diào)性;

(3) 若,且對時,恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其中A,B兩點之間的距離為5,則f(x)的解析式是(

A.y=2sin( x+
B.y=2sin( x+
C.y=2sin( x+
D.y=2sin( x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案