【題目】若關(guān)于x的不等式的解集為 , 且函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍為 ( )
A.
B.
C.
D.

【答案】A
【解析】由不等式的解集為可得的兩根為 , 故可求得 , 所以由函數(shù)上不是單調(diào)函數(shù),可知有解,當(dāng)在有一解時(shí)有解得 , 當(dāng)在有兩解時(shí)有解得 , 綜上可得 , 故選A.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的性質(zhì)和解一元二次不等式是解答本題的根本,需要知道函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集;求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫(xiě)出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說(shuō)法錯(cuò)誤的是(
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對(duì)稱(chēng)軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]時(shí),求fx)的值域;

(2)當(dāng)x[﹣1,1]時(shí),求fx)的最小值ha);

(3)是否存在實(shí)數(shù)m、n,同時(shí)滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)?/span>[m,n]時(shí),其值域?yàn)?/span>[m2,n2],若存在,求出m、n的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為提高員工的綜合素質(zhì),聘請(qǐng)專(zhuān)業(yè)機(jī)構(gòu)對(duì)員工進(jìn)行專(zhuān)業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機(jī)構(gòu)費(fèi)用成本為12000元.公司每位員工的培訓(xùn)費(fèi)用按以下方式與該機(jī)構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過(guò)30人時(shí),每人的培訓(xùn)費(fèi)用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費(fèi)減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費(fèi)為元,培訓(xùn)機(jī)構(gòu)的利潤(rùn)為元.

(1)寫(xiě)出 之間的函數(shù)關(guān)系式;

(2)當(dāng)公司參加培訓(xùn)的員工為多少人時(shí),培訓(xùn)機(jī)構(gòu)可獲得最大利潤(rùn)?并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.

(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

(2)對(duì)于(1)中的函數(shù)和函數(shù),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=lg(-x1)的定義域與函數(shù)gx)=lgx3)的定義域的并集為集合A,函數(shù)tx)=ax2)的值域?yàn)榧?/span>B.

(1)求集合AB.  

(2)若集合AB滿足ABB,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案