設(shè)函數(shù).
(1)在區(qū)間上畫出函數(shù)的圖象 ;
(2)設(shè)集合. 試判斷集合和之間
的關(guān)系,并給出證明 ;
(3)當(dāng)時(shí),求證:在區(qū)間上,的圖象位于函數(shù)圖象的上方.
(1)見解析;(2);(3)見解析.
解析試題分析:(1)畫出在上的圖象,然后將軸下方的翻到上方即可;(2)結(jié)合圖象,求出集合,則其與的關(guān)系一面了然;(3)只需證明當(dāng)時(shí)在區(qū)間上恒成立.
試題解析:(1)函數(shù)在區(qū)間上畫出的圖象如下圖所示:
(2)方程的解分別是和,
由于在和上單調(diào)遞減,在和上單調(diào)遞增,
因此. 6分
由于. 8分
(3)解法一:當(dāng)時(shí),.
設(shè) , 9分
. 又,
① 當(dāng),即時(shí),取, .
, 則. 11分
② 當(dāng),即時(shí),取,=.
由 ①、②可知,當(dāng)時(shí),,. 12分
因此,在區(qū)間上,的圖象位于函數(shù)圖象的上方. 13分
解法二:當(dāng)時(shí),.
由 得,
令 ,解得 或, 10分
在區(qū)間上,當(dāng)時(shí),的圖象與函數(shù)的圖象只交于一點(diǎn);
當(dāng)時(shí),的圖象與函數(shù)的圖象沒有交點(diǎn). 11分
如圖可知,由于直線過點(diǎn),
當(dāng)時(shí),直線是由直線
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義在上的奇函數(shù)
(1).求值;(4分)
(2).若在上單調(diào)遞增,且,求實(shí)數(shù)的取值范圍.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)當(dāng)時(shí),判斷并證明的奇偶性;
(2)是否存在實(shí)數(shù),使得是奇函數(shù)?若存在,求出;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),且,若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合.
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2) 設(shè),若對任意,有,求的取值范圍;
(3)在(1)的條件下,設(shè)是在內(nèi)的零點(diǎn),判斷數(shù)列的增減性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)不等式對一切R恒成立,求實(shí)數(shù)的取值范圍;
(2)已知是定義在上的奇函數(shù),當(dāng)時(shí),,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),,其中是常數(shù),且.
(1)求函數(shù)的極值;
(2)證明:對任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對任意正數(shù)都有:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長度(注:區(qū)間的長度定義為);
(Ⅱ)給定常數(shù),當(dāng)時(shí),求長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com