【題目】如圖,某大型水上樂(lè)園內(nèi)有一塊矩形場(chǎng)地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個(gè)半圓形水上主題樂(lè)園, 都建有圍墻,游客只能從線段處進(jìn)出該主題樂(lè)園.為了進(jìn)一步提高經(jīng)濟(jì)效益,水上樂(lè)園管理部門(mén)決定沿著修建不銹鋼護(hù)欄,沿著線段修建該主題樂(lè)園大門(mén)并設(shè)置檢票口,其中分別為上的動(dòng)點(diǎn), ,且線段與線段在圓心連線的同側(cè).已知弧線部分的修建費(fèi)用為元/米,直線部門(mén)的平均修建費(fèi)用為元/米.

(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?

(2)試確定點(diǎn)的位置,使得修建費(fèi)用最低.

【答案】(1);(2)當(dāng)時(shí),修建費(fèi)用最低.

【解析】試題分析:

1設(shè)直線矩形交于兩點(diǎn),則陰影部分的面積為矩形的面積減去梯形和扇形與扇形的面積.(2)設(shè),則,從而可得修建費(fèi)用,利用導(dǎo)數(shù)求解,可得當(dāng)時(shí),即, 有最小值,即修建費(fèi)用最低.

試題解析

(1)如圖,設(shè)直線矩形交于兩點(diǎn),連,則米, 米.

梯形的面積為平方米,

矩形的面積為平方米,

,得扇形和扇形的面積均為平方米,

故陰影部分面積為平方米

2)設(shè),則

所以,

修建費(fèi)用

所以,

,得,

當(dāng)變化時(shí), 的變化情況如下表:

0

極小值

由上表可得當(dāng)時(shí),即, 有極小值,也為最小值.

故當(dāng)時(shí),修建費(fèi)用最低

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=2cos(2x+)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)y=fx)的圖象.

(1)求fx)的單調(diào)遞增區(qū)間;

(2)求fx)在[0,]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車(chē)革命早已展開(kāi),通過(guò)以新能源汽車(chē)替代汽/柴油車(chē),中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車(chē)行業(yè)的計(jì)劃.2019年某企業(yè)計(jì)劃引進(jìn)新能源汽車(chē)生產(chǎn)設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本2500萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車(chē)售價(jià)5萬(wàn)元,且全年內(nèi)生產(chǎn)的車(chē)輛當(dāng)年能全部銷(xiāo)售完.

(1)求出2019年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額-成本)

(2)2019年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】余江人熱情好客,凡逢喜事,一定要擺上酒宴,請(qǐng)親朋好友、同事高鄰來(lái)助興慶賀.歡度佳節(jié),迎親嫁女,喬遷新居,學(xué)業(yè)有成,仕途風(fēng)順,添丁加口,朋友相聚,都要以酒示意,借酒表達(dá)內(nèi)心的歡喜.而凡有酒宴,一定要?jiǎng)澣,劃拳是余江酒文化的特色.余江人劃拳注重禮節(jié),形式多樣;講究規(guī)矩,蘊(yùn)含著濃厚的傳統(tǒng)文化和淳樸的民俗特色.在禮節(jié)上,講究“尊老尚賢敬遠(yuǎn)客”一般是東道主自己或委托桌上一位酒量好的劃拳高手來(lái)“做關(guān)”,﹣﹣就是依次陪桌上會(huì)劃拳的劃一年數(shù)十二拳(也有半年數(shù)六拳).十二拳之后晚輩還要敬長(zhǎng)輩一杯酒. 再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他還要敬他叔叔一杯,規(guī)則如下:前兩拳只有小明猜贏叔叔,叔叔才會(huì)喝下這杯敬酒,且小明也要陪喝,如果第一拳小明沒(méi)猜到,則小明喝下第一杯酒,繼續(xù)猜第二拳,沒(méi)猜到繼續(xù)喝第二杯,但第三拳不管誰(shuí)贏雙方同飲自己杯中酒,假設(shè)小明每拳贏叔叔的概率為 ,問(wèn)在敬酒這環(huán)節(jié)小明喝酒三杯的概率是多少(
(猜拳只是一種娛樂(lè),喝酒千萬(wàn)不要過(guò)量!)

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱錐的地面是矩形, 平面,,.

(1)求證: 平面;

(2)求二面角的大小;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)y=2f(x)+f′(x)的一個(gè)單調(diào)遞減區(qū)間是(
A.[ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P(x,y)與一定點(diǎn)F(1,0)的距離和它到一定直線l:x=4的距離之比為
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)己知直線l':x=my+1交軌跡C于A、B兩點(diǎn),過(guò)點(diǎn)A、B分別作直線l的垂線,垂足依次為點(diǎn)D、E.連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy24x和直線lx=-1.

(1)若曲線C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)O的距離相等,求Q點(diǎn)的坐標(biāo);

(2)過(guò)直線l上任一點(diǎn)P作拋物線的兩條切線,切點(diǎn)記為AB,求證:直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的長(zhǎng);
(Ⅱ)求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案