若橢圓的離心率為,則雙曲線的漸近線方程為
A.B.C.D.
A

分析:根據(jù)題意,結(jié)合橢圓的性質(zhì),可得e2= ="1-" = ,進(jìn)而可得= ;再由雙曲線的漸進(jìn)性方程,可得答案.
解:根據(jù)題意,橢圓的離心率為,
則有e2= ="1-" = ,
=
則雙曲線的漸近線方程為y=±x,即y=±x;
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1(a>b>0)與雙曲線=1有相同的焦點(diǎn),則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的長(zhǎng)軸長(zhǎng)為4,焦距為2,F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程和動(dòng)點(diǎn)的軌跡的方程。
(2)過橢圓的右焦點(diǎn)作斜率為1的直線交橢圓于A、B兩點(diǎn),求的面積。
(3)設(shè)軌跡軸交于點(diǎn),不同的兩點(diǎn)在軌跡上,
滿足求證:直線恒過軸上的定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線x2-=1的漸近線被圓x2+y2-6x-2y+1=0所截得的弦長(zhǎng)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件:
①焦點(diǎn)在y軸上、诮裹c(diǎn)在x軸上、蹝佄锞上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6、軖佄锞的通徑的長(zhǎng)為5
⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1)
能使這個(gè)拋物線方程為y2=10x的條件是________.(要求填寫合適條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦距為2,點(diǎn)在橢圓上,
 求橢圓的標(biāo)準(zhǔn)方程;
 若過點(diǎn)的直線與中的橢圓交于不同的兩點(diǎn)、之間);
試求面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案