【題目】已知函數(shù)有兩個極值點, ().
(1)求實數(shù)的取值范圍;
(2)設,若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,當時,求的最小值.
【答案】(1).(2).
【解析】試題分析:(I)求出函數(shù)f(x)的導數(shù),可得方程x2-ax+1=0有兩個不相等的正根,即可求出a的范圍;(II)對函數(shù)g(x)求導數(shù),利用極值的定義得出g'(x)=0時存在兩正根x1,x2;再利用判別式以及根與系數(shù)的關系,結合零點的定義,構造函數(shù),利用導數(shù)即可求出函數(shù)y的最小值
解析:
(1)的定義域為,
,
令,即,要使在上有兩個極值點,
則方程有兩個不相等的正根,
則解得,
即.
(2),
由于, 為的兩個零點,
即, ,
兩式相減得: .
∴,
又,
∴,
故,
設,∵, 為的兩根,
∴故,
∴,又,
即,
解得或,
因此,
此時,
,
即函數(shù)在單調遞減,
∴當時, 取得最小值,
∴.
即所求最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】【2018屆四川省成都市第七中學高三上學期模擬】已知橢圓的一個焦點,且過點,右頂點為,經(jīng)過點的動直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)是橢圓上一點, 的角平分線交軸于,求的長;
(3)在軸上是否存在一點,使得點關于軸的對稱點落在上?若存在,求出的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()
A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數(shù)據(jù)列在表中,如何設計甲、乙兩種貨物應各托運的箱數(shù)可以獲得最大利潤,最大利潤是多少?
貨物 | 體積箱 | 重量箱 | 利潤百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運限制 | 24 | 13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓: 的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.
(1)求橢圓的方程;
(2)已知為的中點,是否存在定點,對于任意的都有,若存在,求出點的
坐標;若不存在說明理由;
(3)若過點作直線的平行線交橢圓于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調試,經(jīng)調試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:
項目 | 生產(chǎn)成本 | 檢驗費/次 | 調試費 | 出廠價 |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調試費);
(Ⅲ)假設每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com