【題目】已知 , 是非零不共線的向量,設(shè) = + ,定義點(diǎn)集M={K| = },當(dāng)K1 , K2∈M時,若對于任意的r≥2,不等式| |≤c| |恒成立,則實(shí)數(shù)c的最小值為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對某班男、女學(xué)生學(xué)習(xí)時間進(jìn)行調(diào)查,學(xué)習(xí)時間按整小時統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:
(I)已知該校有 名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足 小時的人數(shù).
(II)若從學(xué)習(xí)時間不少于 小時的學(xué)生中選取 人,設(shè)選到的男生人數(shù)為 ,求隨機(jī)變量 的分布列.
(III)試比較男生學(xué)習(xí)時間的方差 與女生學(xué)習(xí)時間方差 的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)λ>0,設(shè)函數(shù)f(x)=eλx﹣ .
(Ⅰ)當(dāng)λ=1時,求函數(shù)g(x)=f(x)+lnx﹣x的極值;
(Ⅱ)若對任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)如果△ABC的三邊a,b,c滿足b2=ac,且邊b所對角為x,試求x的范圍及此時函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的右焦點(diǎn)為F2(1,0),點(diǎn)H(2, )在橢圓上.
(1)求橢圓的方程;
(2)點(diǎn)M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點(diǎn),求證:△PF2Q的周長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》的論割圓術(shù)中有:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”它體現(xiàn)了一種無限與有限的轉(zhuǎn)化過程.比如在表達(dá)式1+ 中“…”即代表無數(shù)次重復(fù),但原式卻是個定值,它可以通過方程1+ =x求得x= .類比上述過程,則 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,焦點(diǎn)在x軸的橢圓,離心率e= ,且過點(diǎn)A(﹣2,1),由橢圓上異于點(diǎn)A的P點(diǎn)發(fā)出的光線射到A點(diǎn)處被直線y=1反射后交橢圓于Q點(diǎn)(Q點(diǎn)與P點(diǎn)不重合).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)求證:直線PQ的斜率為定值;
(3)求△OPQ的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點(diǎn),若二面角A﹣B1E﹣B的正弦值為 ,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com