(本題滿分14分)設(shè)(為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)設(shè)是奇函數(shù),求與的值;
(3)當(dāng)是奇函數(shù)時(shí),證明對(duì)任何實(shí)數(shù)、c都有成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)函數(shù)
(1)若,求的值域
(2)若在區(qū)間上有最大值14。求的值;
(3)在(2)的前題下,若,作出的草圖,并通過(guò)圖象求出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(不計(jì)入總分):已知函數(shù),設(shè)函數(shù),
(3)當(dāng)a≠0時(shí),求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù),
(1)求證:不論為何實(shí)數(shù)在定義域上總為增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時(shí),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)的定義域是,且對(duì)任意不為零的實(shí)數(shù)x都滿足 =.已知當(dāng)x>0時(shí)
(1)求當(dāng)x<0時(shí),的解析式 (2)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)若函數(shù)在(,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的值;
(2)是否存在正整數(shù)a,使得在(,)上既不是單調(diào)遞增函數(shù)也不是單調(diào)遞減函數(shù)?若存在,試求出a的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),曲線在點(diǎn)處的切線方程為。
(Ⅰ)求、的值;
(Ⅱ)證明:當(dāng),且時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在(0,1)內(nèi)是增函數(shù).
(1)求實(shí)數(shù)的取值范圍;
(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/f/1ajmh4.png" style="vertical-align:middle;" />,且同時(shí)滿足下列條件:
(1)是奇函數(shù);
(2)在定義域上單調(diào)遞減;
(3)求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com