已知函數(shù),曲線在點(diǎn)處的切線方程為
(Ⅰ)求、的值;
(Ⅱ)證明:當(dāng),且時(shí),.

(Ⅰ)。  (Ⅱ)略

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般 情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)
橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20
輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度 x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v (x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)镽,滿足:①;
②對(duì)任意實(shí)數(shù),有.
(Ⅰ)求,的值;
(Ⅱ)判斷函數(shù)的奇偶性與周期性,并求的值;
(Ⅲ)是否存在常數(shù),使得不等式對(duì)一切實(shí)數(shù)成立.如果存在,求出常數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)設(shè)為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)設(shè)是奇函數(shù),求的值;
(3)當(dāng)是奇函數(shù)時(shí),證明對(duì)任何實(shí)數(shù)、c都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.已知函數(shù), 其反函數(shù)為
(1) 若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b8/b/1zoks4.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2) 當(dāng)時(shí),求函數(shù)的最小值;
(3) 是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/9/38c9v.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/9/lmvgh.png" style="vertical-align:middle;" />,若存在,求出的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)
已知函數(shù)f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 試討論函數(shù)f (x )的單調(diào)性;
(Ⅱ) 若a>0,求函數(shù)f (x ) 在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)對(duì)任意實(shí)數(shù)恒有且當(dāng)x>0,

(1)判斷的奇偶性;
(2)求在區(qū)間[-3,3]上的最大值;
(3)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng),且時(shí),求的值;
(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是,若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數(shù),當(dāng)x>0時(shí),f(x)有最小值2,其中b∈N且f(1)<.試求函數(shù)f(x)的解析式

查看答案和解析>>

同步練習(xí)冊(cè)答案