【題目】設(shè),,函數(shù)

1寫出的單調(diào)區(qū)間;

2上的最大值為,求的取值范圍;

3若對(duì)任意正實(shí)數(shù),不等式恒成立,求正實(shí)數(shù)的最大值

【答案】1單減區(qū)間是,單增區(qū)間是;2;3

【解析】

試題分析:1由于,函數(shù)開口向上,對(duì)稱軸為,所以單減區(qū)間是,單增區(qū)間是;2當(dāng)時(shí),;當(dāng)時(shí),成立;3原不等式等價(jià)于,令,利用換元法,分離參數(shù)得到,分類討論兩個(gè)函數(shù)的大小,求得的最大值為

試題解析:

1單減區(qū)間是,單增區(qū)間是………………2分

2當(dāng)時(shí),;當(dāng)時(shí),成立………………6分

3原不等式,令,則不等式變?yōu)?/span>

,

即該關(guān)于的不等式的解集為

設(shè),由題意有

,即,

,即,

時(shí),要使,必須,顯然不成立;

當(dāng)時(shí),,此時(shí)必有,故的最大值是1………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題若直線ABCD是異面直線,則直線ACBD也是異面直線的過程歸納為以下三個(gè)步驟:

①則A、BC、D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;

②所以假設(shè)錯(cuò)誤,即直線AC、BD也是異面直線;

③假設(shè)直線AC、BD是共面直線.

則正確的序號(hào)順序?yàn)?/span>______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

2是否存在整數(shù),使得關(guān)于的不等式的解集為?若存在,求出的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實(shí)數(shù),

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對(duì)于任意,上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了美化城市環(huán)境,某針對(duì)市民亂扔垃圾現(xiàn)象進(jìn)行罰款處理。為了更好的了解市民的態(tài)度,隨機(jī)抽取了200人進(jìn)行了調(diào)查,得到如下數(shù)據(jù):

罰款金額(單位:元)

0

5

10

15

20

會(huì)繼續(xù)亂扔垃圾的人數(shù)

80

50

40

20

10

(1)若亂扔垃圾的人數(shù)與罰款金額滿足線性回歸方程,求回歸方程,其中,并據(jù)此分析,要使亂扔垃圾者不超過,罰款金額至少是多少元?

(2)若以調(diào)查數(shù)據(jù)為基礎(chǔ),從5種罰款金額中隨機(jī)抽取2種不同的數(shù)額,求這兩種金額之和不低于25元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v單位:千米/小時(shí)是車流密度x單位:輛/千米的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).

1當(dāng)0≤x≤200時(shí),求函數(shù)vx的表達(dá)式;

2當(dāng)車流密度x為多大時(shí),車流量單位時(shí)間內(nèi)通過橋上某測(cè)觀點(diǎn)的車輛數(shù),單位:輛/小時(shí)fxx·vx可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)原有員工1000人,每人每年可為企業(yè)創(chuàng)利潤15萬元,為應(yīng)對(duì)國際金融危機(jī)給企業(yè)帶來的不利影響,該企業(yè)實(shí)施優(yōu)化重組,分流增效的策略,分流出一部分員工待崗為維護(hù)生產(chǎn)穩(wěn)定,該企業(yè)決定待崗人數(shù)不超過原有員工的2%,并且每年給每位待崗員工發(fā)放生活補(bǔ)貼1萬元據(jù)評(píng)估,當(dāng)待崗員工人數(shù)不超過原有員工14%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤萬元;當(dāng)待崗員工人數(shù)超過原有員工14%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤18萬元

1求企業(yè)年利潤萬元關(guān)于待崗員工人數(shù)的函數(shù)關(guān)系式;

2為使企業(yè)年利潤最大,應(yīng)安排多少員工待崗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件抽到的是二等品或三等品的概率為(  )

A. 0.7 B. 0.65

C. 0.35 D. 0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)為圓心的圓過原點(diǎn).

(1)設(shè)直線與圓交于點(diǎn),若,求圓的方程;

(2)在(1)的條件下,設(shè),且分別是直線和圓上的動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案