【題目】已知橢圓E,過(guò)右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓EAB兩點(diǎn)處的切線交于P,點(diǎn)P在定直線.

1)記點(diǎn),求過(guò)點(diǎn)與橢圓E相切的直線方程;

2)以為直徑的圓過(guò)點(diǎn)F,求面積的最小值.

【答案】1;(2最小.

【解析】

1)設(shè)過(guò)點(diǎn)的直線為,聯(lián)立橢圓方程,利用即可求出斜率;

2)設(shè)直線l,聯(lián)立橢圓方程,表示出,表示出點(diǎn)到直線l的距離為,表示出,用上為直徑,,進(jìn)一步轉(zhuǎn)化為求函數(shù)的最小值,求最小值時(shí)用換元法.

.

解:(1)設(shè)過(guò)點(diǎn)的直線為,

直線代入橢圓E,

,,,

過(guò)點(diǎn)與橢圓E相切的直線方程為.

2)焦點(diǎn),設(shè),直線l.

直線l與橢圓E聯(lián)立消去x

,

.

點(diǎn)到直線l的距離為,

為直徑的圓過(guò)點(diǎn)F,得,

,

,

求導(dǎo),,

上遞增,

當(dāng)時(shí),最小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線)上的兩個(gè)動(dòng)點(diǎn),焦點(diǎn)為F.線段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線的焦點(diǎn)F的距離之和為8.


1)求拋物線的標(biāo)準(zhǔn)方程;

2)若線段AB的垂直平分線與x軸交于點(diǎn)C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,短軸長(zhǎng)為2,過(guò)定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn)之間).

1)求橢圓的方程;

2)若,求實(shí)數(shù)的取值范圍;

3)若射線交橢圓于點(diǎn)為原點(diǎn)),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxsinx+axa0).

1)若a1,求證:當(dāng)x1,)時(shí),fx)<2x1

2)若fx)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E,過(guò)右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(AB兩點(diǎn)不在x軸上),橢圓EA,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線.

1)記點(diǎn),求過(guò)點(diǎn)與橢圓E相切的直線方程;

2)以為直徑的圓過(guò)點(diǎn)F,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的極大值點(diǎn);

2)當(dāng),時(shí),若過(guò)點(diǎn)存在3條直線與曲線相切,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為矩形,側(cè)面平面,.,若點(diǎn)M的中點(diǎn),則下列說(shuō)法正確的個(gè)數(shù)為(

1平面 2)四棱錐的體積為12

3平面 4)四棱錐外接球的表面積為

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圖中直棱柱的底面是菱形,其中.又點(diǎn)分別在棱上運(yùn)動(dòng),且滿足:,.

1)求證:四點(diǎn)共面,并證明∥平面.

2)是否存在點(diǎn)使得二面角的余弦值為?如果存在,求出的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案