【題目】數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中.
(1)若,試判斷是否是等差數(shù)列,并說明理由;
(2)若,,求數(shù)列的通項(xiàng)公式;
(3)對(2)中的數(shù)列,是否存在等差數(shù)列,使得對一切都成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請說明理由.
【答案】(1)是等差數(shù)列,理由見解析 (2) (3)存在,
【解析】
(1)求出的通項(xiàng)公式,即可得出結(jié)論;
(2)代入,可得出數(shù)列的遞推公式,求出,猜測,用數(shù)學(xué)歸納法證明;
(3)先求出,求出的通項(xiàng)公式,然后證明是否滿足條件.
解:(1)
.
所以是等差數(shù)列.
(2)∵,
∴,
∵,∴,,,
猜測:.
證明:(數(shù)學(xué)歸納法)
Ⅰ 時成立,
Ⅱ 假設(shè)成立,即,
那么時,
∴,
∴時也成立,
綜合ⅠⅡ對任意,都成立.
(3)時,,,
時,,,
若存在等差數(shù)列,使得對一切都成立,
只能.
下證符合要求
.
得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,,是的中點(diǎn),是與的交點(diǎn).將沿折起到的位置,如圖.
(Ⅰ)證明:平面;
(Ⅱ)若平面平面,求平面與平面夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝新中國成立70周年,某市工會組織部分事業(yè)單位職工舉行“迎國慶,廣播操比賽”活動.現(xiàn)有200名職工參與了此項(xiàng)活動,將這200人按照年齡(單位:歲)分組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的頻率分布直方圖如圖所示.記事件A為“從這200人中隨機(jī)抽取一人,其年齡不低于35歲”,已知P(A)=0.75.
(1)求的值;
(2)在第二組、第四組中用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人作為活動的負(fù)責(zé)人,求這2人恰好都在第四組中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知雙曲線:.
(1)設(shè)是的左焦點(diǎn),是右支上一點(diǎn).若,求點(diǎn)的坐標(biāo);
(2)設(shè)斜率為1的直線交于、兩點(diǎn),若與圓相切,求證:;
(3)設(shè)橢圓:.若、分別是、上的動點(diǎn),且,求證:到直線的距離是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形,,,平面,且,設(shè),分別為,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②這兩個條件中任選-一個,補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題.
在中,角的對邊分別為,已知 ,.
(1)求;
(2)如圖,為邊上一點(diǎn),,求的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是一個集合,是一個以的某些子集為元素的集合,且滿足:(1)屬于,屬于;(2)中任意多個元素的并集屬于;(3)中任意多個元素的交集屬于,則稱是集合上的一個拓補(bǔ).已知集合,對于下面給出的四個集合:
①②
③④
其中是集合上的拓補(bǔ)的集合的序號是______.(寫出所有的拓補(bǔ)的集合的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com